1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wmglo@dent.med.uni-muenchen.de>
5 and Doug Lea <dl@cs.oswego.edu>, 1996.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* V2.6.4-pt3 Thu Feb 20 1997
24 This work is mainly derived from malloc-2.6.4 by Doug Lea
25 <dl@cs.oswego.edu>, which is available from:
27 ftp://g.oswego.edu/pub/misc/malloc.c
29 Most of the original comments are reproduced in the code below.
31 * Why use this malloc?
33 This is not the fastest, most space-conserving, most portable, or
34 most tunable malloc ever written. However it is among the fastest
35 while also being among the most space-conserving, portable and tunable.
36 Consistent balance across these factors results in a good general-purpose
37 allocator. For a high-level description, see
38 http://g.oswego.edu/dl/html/malloc.html
40 On many systems, the standard malloc implementation is by itself not
41 thread-safe, and therefore wrapped with a single global lock around
42 all malloc-related functions. In some applications, especially with
43 multiple available processors, this can lead to contention problems
44 and bad performance. This malloc version was designed with the goal
45 to avoid waiting for locks as much as possible. Statistics indicate
46 that this goal is achieved in many cases.
48 * Synopsis of public routines
50 (Much fuller descriptions are contained in the program documentation below.)
53 Initialize global configuration. When compiled for multiple threads,
54 this function must be called once before any other function in the
55 package. It is not required otherwise. It is called automatically
56 in the Linux/GNU C libray or when compiling with MALLOC_HOOKS.
58 Return a pointer to a newly allocated chunk of at least n bytes, or null
59 if no space is available.
61 Release the chunk of memory pointed to by p, or no effect if p is null.
62 realloc(Void_t* p, size_t n);
63 Return a pointer to a chunk of size n that contains the same data
64 as does chunk p up to the minimum of (n, p's size) bytes, or null
65 if no space is available. The returned pointer may or may not be
66 the same as p. If p is null, equivalent to malloc. Unless the
67 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
68 size argument of zero (re)allocates a minimum-sized chunk.
69 memalign(size_t alignment, size_t n);
70 Return a pointer to a newly allocated chunk of n bytes, aligned
71 in accord with the alignment argument, which must be a power of
74 Equivalent to memalign(pagesize, n), where pagesize is the page
75 size of the system (or as near to this as can be figured out from
76 all the includes/defines below.)
78 Equivalent to valloc(minimum-page-that-holds(n)), that is,
79 round up n to nearest pagesize.
80 calloc(size_t unit, size_t quantity);
81 Returns a pointer to quantity * unit bytes, with all locations
84 Equivalent to free(p).
85 malloc_trim(size_t pad);
86 Release all but pad bytes of freed top-most memory back
87 to the system. Return 1 if successful, else 0.
88 malloc_usable_size(Void_t* p);
89 Report the number usable allocated bytes associated with allocated
90 chunk p. This may or may not report more bytes than were requested,
91 due to alignment and minimum size constraints.
93 Prints brief summary statistics on stderr.
95 Returns (by copy) a struct containing various summary statistics.
96 mallopt(int parameter_number, int parameter_value)
97 Changes one of the tunable parameters described below. Returns
98 1 if successful in changing the parameter, else 0.
103 8 byte alignment is currently hardwired into the design. This
104 seems to suffice for all current machines and C compilers.
106 Assumed pointer representation: 4 or 8 bytes
107 Code for 8-byte pointers is untested by me but has worked
108 reliably by Wolfram Gloger, who contributed most of the
109 changes supporting this.
111 Assumed size_t representation: 4 or 8 bytes
112 Note that size_t is allowed to be 4 bytes even if pointers are 8.
114 Minimum overhead per allocated chunk: 4 or 8 bytes
115 Each malloced chunk has a hidden overhead of 4 bytes holding size
116 and status information.
118 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
119 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
121 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
122 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
123 needed; 4 (8) for a trailing size field
124 and 8 (16) bytes for free list pointers. Thus, the minimum
125 allocatable size is 16/24/32 bytes.
127 Even a request for zero bytes (i.e., malloc(0)) returns a
128 pointer to something of the minimum allocatable size.
130 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
131 8-byte size_t: 2^63 - 16 bytes
133 It is assumed that (possibly signed) size_t bit values suffice to
134 represent chunk sizes. `Possibly signed' is due to the fact
135 that `size_t' may be defined on a system as either a signed or
136 an unsigned type. To be conservative, values that would appear
137 as negative numbers are avoided.
138 Requests for sizes with a negative sign bit will return a
141 Maximum overhead wastage per allocated chunk: normally 15 bytes
143 Alignment demands, plus the minimum allocatable size restriction
144 make the normal worst-case wastage 15 bytes (i.e., up to 15
145 more bytes will be allocated than were requested in malloc), with
147 1. Because requests for zero bytes allocate non-zero space,
148 the worst case wastage for a request of zero bytes is 24 bytes.
149 2. For requests >= mmap_threshold that are serviced via
150 mmap(), the worst case wastage is 8 bytes plus the remainder
151 from a system page (the minimal mmap unit); typically 4096 bytes.
155 Here are some features that are NOT currently supported
157 * No automated mechanism for fully checking that all accesses
158 to malloced memory stay within their bounds.
159 * No support for compaction.
161 * Synopsis of compile-time options:
163 People have reported using previous versions of this malloc on all
164 versions of Unix, sometimes by tweaking some of the defines
165 below. It has been tested most extensively on Solaris and
166 Linux. People have also reported adapting this malloc for use in
167 stand-alone embedded systems.
169 The implementation is in straight, hand-tuned ANSI C. Among other
170 consequences, it uses a lot of macros. Because of this, to be at
171 all usable, this code should be compiled using an optimizing compiler
172 (for example gcc -O2) that can simplify expressions and control
175 __STD_C (default: derived from C compiler defines)
176 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
177 a C compiler sufficiently close to ANSI to get away with it.
178 MALLOC_DEBUG (default: NOT defined)
179 Define to enable debugging. Adds fairly extensive assertion-based
180 checking to help track down memory errors, but noticeably slows down
182 MALLOC_HOOKS (default: NOT defined)
183 Define to enable support run-time replacement of the allocation
184 functions through user-defined `hooks'.
185 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
186 Define this if you think that realloc(p, 0) should be equivalent
187 to free(p). Otherwise, since malloc returns a unique pointer for
188 malloc(0), so does realloc(p, 0).
189 HAVE_MEMCPY (default: defined)
190 Define if you are not otherwise using ANSI STD C, but still
191 have memcpy and memset in your C library and want to use them.
192 Otherwise, simple internal versions are supplied.
193 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
194 Define as 1 if you want the C library versions of memset and
195 memcpy called in realloc and calloc (otherwise macro versions are used).
196 At least on some platforms, the simple macro versions usually
197 outperform libc versions.
198 HAVE_MMAP (default: defined as 1)
199 Define to non-zero to optionally make malloc() use mmap() to
200 allocate very large blocks.
201 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
202 Define to non-zero to optionally make realloc() use mremap() to
203 reallocate very large blocks.
204 malloc_getpagesize (default: derived from system #includes)
205 Either a constant or routine call returning the system page size.
206 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
207 Optionally define if you are on a system with a /usr/include/malloc.h
208 that declares struct mallinfo. It is not at all necessary to
209 define this even if you do, but will ensure consistency.
210 INTERNAL_SIZE_T (default: size_t)
211 Define to a 32-bit type (probably `unsigned int') if you are on a
212 64-bit machine, yet do not want or need to allow malloc requests of
213 greater than 2^31 to be handled. This saves space, especially for
215 _LIBC (default: NOT defined)
216 Defined only when compiled as part of the Linux libc/glibc.
217 Also note that there is some odd internal name-mangling via defines
218 (for example, internally, `malloc' is named `mALLOc') needed
219 when compiling in this case. These look funny but don't otherwise
221 LACKS_UNISTD_H (default: undefined)
222 Define this if your system does not have a <unistd.h>.
223 MORECORE (default: sbrk)
224 The name of the routine to call to obtain more memory from the system.
225 MORECORE_FAILURE (default: -1)
226 The value returned upon failure of MORECORE.
227 MORECORE_CLEARS (default 1)
228 True (1) if the routine mapped to MORECORE zeroes out memory (which
230 DEFAULT_TRIM_THRESHOLD
232 DEFAULT_MMAP_THRESHOLD
234 Default values of tunable parameters (described in detail below)
235 controlling interaction with host system routines (sbrk, mmap, etc).
236 These values may also be changed dynamically via mallopt(). The
237 preset defaults are those that give best performance for typical
240 When the standard debugging hooks are in place, and a pointer is
241 detected as corrupt, do nothing (0), print an error message (1),
249 * Compile-time options for multiple threads:
251 USE_PTHREADS, USE_THR, USE_SPROC
252 Define one of these as 1 to select the thread interface:
253 POSIX threads, Solaris threads or SGI sproc's, respectively.
254 If none of these is defined as non-zero, you get a `normal'
255 malloc implementation which is not thread-safe. Support for
256 multiple threads requires HAVE_MMAP=1. As an exception, when
257 compiling for GNU libc, i.e. when _LIBC is defined, then none of
258 the USE_... symbols have to be defined.
262 When thread support is enabled, additional `heap's are created
263 with mmap calls. These are limited in size; HEAP_MIN_SIZE should
264 be a multiple of the page size, while HEAP_MAX_SIZE must be a power
265 of two for alignment reasons. HEAP_MAX_SIZE should be at least
266 twice as large as the mmap threshold.
268 When this is defined as non-zero, some statistics on mutex locking
279 #if defined (__STDC__)
286 #endif /*__cplusplus*/
299 # include <stddef.h> /* for size_t */
300 # if defined _LIBC || defined MALLOC_HOOKS
301 # include <stdlib.h> /* for getenv(), abort() */
304 # include <sys/types.h>
307 /* Macros for handling mutexes and thread-specific data. This is
308 included early, because some thread-related header files (such as
309 pthread.h) should be included before any others. */
310 #include "thread-m.h"
316 #include <stdio.h> /* needed for malloc_stats */
327 Because freed chunks may be overwritten with link fields, this
328 malloc will often die when freed memory is overwritten by user
329 programs. This can be very effective (albeit in an annoying way)
330 in helping track down dangling pointers.
332 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
333 enabled that will catch more memory errors. You probably won't be
334 able to make much sense of the actual assertion errors, but they
335 should help you locate incorrectly overwritten memory. The
336 checking is fairly extensive, and will slow down execution
337 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set will
338 attempt to check every non-mmapped allocated and free chunk in the
339 course of computing the summaries. (By nature, mmapped regions
340 cannot be checked very much automatically.)
342 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
343 this code. The assertions in the check routines spell out in more
344 detail the assumptions and invariants underlying the algorithms.
351 #define assert(x) ((void)0)
356 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
357 of chunk sizes. On a 64-bit machine, you can reduce malloc
358 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
359 at the expense of not being able to handle requests greater than
360 2^31. This limitation is hardly ever a concern; you are encouraged
361 to set this. However, the default version is the same as size_t.
364 #ifndef INTERNAL_SIZE_T
365 #define INTERNAL_SIZE_T size_t
369 REALLOC_ZERO_BYTES_FREES should be set if a call to
370 realloc with zero bytes should be the same as a call to free.
371 Some people think it should. Otherwise, since this malloc
372 returns a unique pointer for malloc(0), so does realloc(p, 0).
376 /* #define REALLOC_ZERO_BYTES_FREES */
380 HAVE_MEMCPY should be defined if you are not otherwise using
381 ANSI STD C, but still have memcpy and memset in your C library
382 and want to use them in calloc and realloc. Otherwise simple
383 macro versions are defined here.
385 USE_MEMCPY should be defined as 1 if you actually want to
386 have memset and memcpy called. People report that the macro
387 versions are often enough faster than libc versions on many
388 systems that it is better to use them.
392 #define HAVE_MEMCPY 1
402 #if (__STD_C || defined(HAVE_MEMCPY))
405 void* memset(void*, int, size_t);
406 void* memcpy(void*, const void*, size_t);
415 /* The following macros are only invoked with (2n+1)-multiples of
416 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
417 for fast inline execution when n is small. */
419 #define MALLOC_ZERO(charp, nbytes) \
421 INTERNAL_SIZE_T mzsz = (nbytes); \
422 if(mzsz <= 9*sizeof(mzsz)) { \
423 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
424 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
426 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
428 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
433 } else memset((charp), 0, mzsz); \
436 #define MALLOC_COPY(dest,src,nbytes) \
438 INTERNAL_SIZE_T mcsz = (nbytes); \
439 if(mcsz <= 9*sizeof(mcsz)) { \
440 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
441 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
442 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
443 *mcdst++ = *mcsrc++; \
444 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
445 *mcdst++ = *mcsrc++; \
446 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
447 *mcdst++ = *mcsrc++; }}} \
448 *mcdst++ = *mcsrc++; \
449 *mcdst++ = *mcsrc++; \
451 } else memcpy(dest, src, mcsz); \
454 #else /* !USE_MEMCPY */
456 /* Use Duff's device for good zeroing/copying performance. */
458 #define MALLOC_ZERO(charp, nbytes) \
460 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
461 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
462 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
464 case 0: for(;;) { *mzp++ = 0; \
465 case 7: *mzp++ = 0; \
466 case 6: *mzp++ = 0; \
467 case 5: *mzp++ = 0; \
468 case 4: *mzp++ = 0; \
469 case 3: *mzp++ = 0; \
470 case 2: *mzp++ = 0; \
471 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
475 #define MALLOC_COPY(dest,src,nbytes) \
477 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
478 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
479 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
480 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
482 case 0: for(;;) { *mcdst++ = *mcsrc++; \
483 case 7: *mcdst++ = *mcsrc++; \
484 case 6: *mcdst++ = *mcsrc++; \
485 case 5: *mcdst++ = *mcsrc++; \
486 case 4: *mcdst++ = *mcsrc++; \
487 case 3: *mcdst++ = *mcsrc++; \
488 case 2: *mcdst++ = *mcsrc++; \
489 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
496 #ifndef LACKS_UNISTD_H
501 Define HAVE_MMAP to optionally make malloc() use mmap() to
502 allocate very large blocks. These will be returned to the
503 operating system immediately after a free().
507 # ifdef _POSIX_MAPPED_FILES
513 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
514 large blocks. This is currently only possible on Linux with
515 kernel versions newer than 1.3.77.
519 #define HAVE_MREMAP defined(__linux__) && !defined(__arm__)
526 #include <sys/mman.h>
528 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
529 #define MAP_ANONYMOUS MAP_ANON
532 #ifndef MAP_NORESERVE
533 # ifdef MAP_AUTORESRV
534 # define MAP_NORESERVE MAP_AUTORESRV
536 # define MAP_NORESERVE 0
540 #endif /* HAVE_MMAP */
543 Access to system page size. To the extent possible, this malloc
544 manages memory from the system in page-size units.
546 The following mechanics for getpagesize were adapted from
547 bsd/gnu getpagesize.h
550 #ifndef malloc_getpagesize
551 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
552 # ifndef _SC_PAGE_SIZE
553 # define _SC_PAGE_SIZE _SC_PAGESIZE
556 # ifdef _SC_PAGE_SIZE
557 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
559 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
560 extern size_t getpagesize();
561 # define malloc_getpagesize getpagesize()
563 # include <sys/param.h>
564 # ifdef EXEC_PAGESIZE
565 # define malloc_getpagesize EXEC_PAGESIZE
569 # define malloc_getpagesize NBPG
571 # define malloc_getpagesize (NBPG * CLSIZE)
575 # define malloc_getpagesize NBPC
578 # define malloc_getpagesize PAGESIZE
580 # define malloc_getpagesize (4096) /* just guess */
593 This version of malloc supports the standard SVID/XPG mallinfo
594 routine that returns a struct containing the same kind of
595 information you can get from malloc_stats. It should work on
596 any SVID/XPG compliant system that has a /usr/include/malloc.h
597 defining struct mallinfo. (If you'd like to install such a thing
598 yourself, cut out the preliminary declarations as described above
599 and below and save them in a malloc.h file. But there's no
600 compelling reason to bother to do this.)
602 The main declaration needed is the mallinfo struct that is returned
603 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
604 bunch of fields, most of which are not even meaningful in this
605 version of malloc. Some of these fields are are instead filled by
606 mallinfo() with other numbers that might possibly be of interest.
608 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
609 /usr/include/malloc.h file that includes a declaration of struct
610 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
611 version is declared below. These must be precisely the same for
616 /* #define HAVE_USR_INCLUDE_MALLOC_H */
618 #if HAVE_USR_INCLUDE_MALLOC_H
619 # include "/usr/include/malloc.h"
624 # include "ptmalloc.h"
630 #ifndef DEFAULT_TRIM_THRESHOLD
631 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
635 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
636 to keep before releasing via malloc_trim in free().
638 Automatic trimming is mainly useful in long-lived programs.
639 Because trimming via sbrk can be slow on some systems, and can
640 sometimes be wasteful (in cases where programs immediately
641 afterward allocate more large chunks) the value should be high
642 enough so that your overall system performance would improve by
645 The trim threshold and the mmap control parameters (see below)
646 can be traded off with one another. Trimming and mmapping are
647 two different ways of releasing unused memory back to the
648 system. Between these two, it is often possible to keep
649 system-level demands of a long-lived program down to a bare
650 minimum. For example, in one test suite of sessions measuring
651 the XF86 X server on Linux, using a trim threshold of 128K and a
652 mmap threshold of 192K led to near-minimal long term resource
655 If you are using this malloc in a long-lived program, it should
656 pay to experiment with these values. As a rough guide, you
657 might set to a value close to the average size of a process
658 (program) running on your system. Releasing this much memory
659 would allow such a process to run in memory. Generally, it's
660 worth it to tune for trimming rather than memory mapping when a
661 program undergoes phases where several large chunks are
662 allocated and released in ways that can reuse each other's
663 storage, perhaps mixed with phases where there are no such
664 chunks at all. And in well-behaved long-lived programs,
665 controlling release of large blocks via trimming versus mapping
668 However, in most programs, these parameters serve mainly as
669 protection against the system-level effects of carrying around
670 massive amounts of unneeded memory. Since frequent calls to
671 sbrk, mmap, and munmap otherwise degrade performance, the default
672 parameters are set to relatively high values that serve only as
675 The default trim value is high enough to cause trimming only in
676 fairly extreme (by current memory consumption standards) cases.
677 It must be greater than page size to have any useful effect. To
678 disable trimming completely, you can set to (unsigned long)(-1);
684 #ifndef DEFAULT_TOP_PAD
685 #define DEFAULT_TOP_PAD (0)
689 M_TOP_PAD is the amount of extra `padding' space to allocate or
690 retain whenever sbrk is called. It is used in two ways internally:
692 * When sbrk is called to extend the top of the arena to satisfy
693 a new malloc request, this much padding is added to the sbrk
696 * When malloc_trim is called automatically from free(),
697 it is used as the `pad' argument.
699 In both cases, the actual amount of padding is rounded
700 so that the end of the arena is always a system page boundary.
702 The main reason for using padding is to avoid calling sbrk so
703 often. Having even a small pad greatly reduces the likelihood
704 that nearly every malloc request during program start-up (or
705 after trimming) will invoke sbrk, which needlessly wastes
708 Automatic rounding-up to page-size units is normally sufficient
709 to avoid measurable overhead, so the default is 0. However, in
710 systems where sbrk is relatively slow, it can pay to increase
711 this value, at the expense of carrying around more memory than
717 #ifndef DEFAULT_MMAP_THRESHOLD
718 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
723 M_MMAP_THRESHOLD is the request size threshold for using mmap()
724 to service a request. Requests of at least this size that cannot
725 be allocated using already-existing space will be serviced via mmap.
726 (If enough normal freed space already exists it is used instead.)
728 Using mmap segregates relatively large chunks of memory so that
729 they can be individually obtained and released from the host
730 system. A request serviced through mmap is never reused by any
731 other request (at least not directly; the system may just so
732 happen to remap successive requests to the same locations).
734 Segregating space in this way has the benefit that mmapped space
735 can ALWAYS be individually released back to the system, which
736 helps keep the system level memory demands of a long-lived
737 program low. Mapped memory can never become `locked' between
738 other chunks, as can happen with normally allocated chunks, which
739 menas that even trimming via malloc_trim would not release them.
741 However, it has the disadvantages that:
743 1. The space cannot be reclaimed, consolidated, and then
744 used to service later requests, as happens with normal chunks.
745 2. It can lead to more wastage because of mmap page alignment
747 3. It causes malloc performance to be more dependent on host
748 system memory management support routines which may vary in
749 implementation quality and may impose arbitrary
750 limitations. Generally, servicing a request via normal
751 malloc steps is faster than going through a system's mmap.
753 All together, these considerations should lead you to use mmap
754 only for relatively large requests.
761 #ifndef DEFAULT_MMAP_MAX
763 #define DEFAULT_MMAP_MAX (1024)
765 #define DEFAULT_MMAP_MAX (0)
770 M_MMAP_MAX is the maximum number of requests to simultaneously
771 service using mmap. This parameter exists because:
773 1. Some systems have a limited number of internal tables for
775 2. In most systems, overreliance on mmap can degrade overall
777 3. If a program allocates many large regions, it is probably
778 better off using normal sbrk-based allocation routines that
779 can reclaim and reallocate normal heap memory. Using a
780 small value allows transition into this mode after the
781 first few allocations.
783 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
784 the default value is 0, and attempts to set it to non-zero values
785 in mallopt will fail.
790 #ifndef DEFAULT_CHECK_ACTION
791 #define DEFAULT_CHECK_ACTION 1
794 /* What to do if the standard debugging hooks are in place and a
795 corrupt pointer is detected: do nothing (0), print an error message
796 (1), or call abort() (2). */
800 #define HEAP_MIN_SIZE (32*1024)
801 #define HEAP_MAX_SIZE (1024*1024) /* must be a power of two */
803 /* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps
804 that are dynamically created for multi-threaded programs. The
805 maximum size must be a power of two, for fast determination of
806 which heap belongs to a chunk. It should be much larger than
807 the mmap threshold, so that requests with a size just below that
808 threshold can be fulfilled without creating too many heaps.
814 #define THREAD_STATS 0
817 /* If THREAD_STATS is non-zero, some statistics on mutex locking are
823 Special defines for the Linux/GNU C library.
832 Void_t * __default_morecore (ptrdiff_t);
833 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
837 Void_t * __default_morecore ();
838 Void_t *(*__morecore)() = __default_morecore;
842 #define MORECORE (*__morecore)
843 #define MORECORE_FAILURE 0
844 #define MORECORE_CLEARS 1
846 #define munmap __munmap
847 #define mremap __mremap
848 #define mprotect __mprotect
849 #undef malloc_getpagesize
850 #define malloc_getpagesize __getpagesize()
855 extern Void_t* sbrk(ptrdiff_t);
857 extern Void_t* sbrk();
861 #define MORECORE sbrk
864 #ifndef MORECORE_FAILURE
865 #define MORECORE_FAILURE -1
868 #ifndef MORECORE_CLEARS
869 #define MORECORE_CLEARS 1
876 #define cALLOc __libc_calloc
877 #define fREe __libc_free
878 #define mALLOc __libc_malloc
879 #define mEMALIGn __libc_memalign
880 #define rEALLOc __libc_realloc
881 #define vALLOc __libc_valloc
882 #define pvALLOc __libc_pvalloc
883 #define mALLINFo __libc_mallinfo
884 #define mALLOPt __libc_mallopt
885 #define mALLOC_STATs __malloc_stats
886 #define mALLOC_USABLE_SIZe __malloc_usable_size
887 #define mALLOC_TRIm __malloc_trim
888 #define mALLOC_GET_STATe __malloc_get_state
889 #define mALLOC_SET_STATe __malloc_set_state
893 #define cALLOc calloc
895 #define mALLOc malloc
896 #define mEMALIGn memalign
897 #define rEALLOc realloc
898 #define vALLOc valloc
899 #define pvALLOc pvalloc
900 #define mALLINFo mallinfo
901 #define mALLOPt mallopt
902 #define mALLOC_STATs malloc_stats
903 #define mALLOC_USABLE_SIZe malloc_usable_size
904 #define mALLOC_TRIm malloc_trim
905 #define mALLOC_GET_STATe malloc_get_state
906 #define mALLOC_SET_STATe malloc_set_state
910 /* Public routines */
915 void ptmalloc_init(void);
917 Void_t* mALLOc(size_t);
919 Void_t* rEALLOc(Void_t*, size_t);
920 Void_t* mEMALIGn(size_t, size_t);
921 Void_t* vALLOc(size_t);
922 Void_t* pvALLOc(size_t);
923 Void_t* cALLOc(size_t, size_t);
925 int mALLOC_TRIm(size_t);
926 size_t mALLOC_USABLE_SIZe(Void_t*);
927 void mALLOC_STATs(void);
928 int mALLOPt(int, int);
929 struct mallinfo mALLINFo(void);
930 Void_t* mALLOC_GET_STATe(void);
931 int mALLOC_SET_STATe(Void_t*);
936 void ptmalloc_init();
947 size_t mALLOC_USABLE_SIZe();
950 struct mallinfo mALLINFo();
951 Void_t* mALLOC_GET_STATe();
952 int mALLOC_SET_STATe();
958 }; /* end of extern "C" */
961 #if !defined(NO_THREADS) && !HAVE_MMAP
962 "Can't have threads support without mmap"
973 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
974 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
975 struct malloc_chunk* fd; /* double links -- used only if free. */
976 struct malloc_chunk* bk;
979 typedef struct malloc_chunk* mchunkptr;
983 malloc_chunk details:
985 (The following includes lightly edited explanations by Colin Plumb.)
987 Chunks of memory are maintained using a `boundary tag' method as
988 described in e.g., Knuth or Standish. (See the paper by Paul
989 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
990 survey of such techniques.) Sizes of free chunks are stored both
991 in the front of each chunk and at the end. This makes
992 consolidating fragmented chunks into bigger chunks very fast. The
993 size fields also hold bits representing whether chunks are free or
996 An allocated chunk looks like this:
999 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1000 | Size of previous chunk, if allocated | |
1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1002 | Size of chunk, in bytes |P|
1003 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1004 | User data starts here... .
1006 . (malloc_usable_space() bytes) .
1008 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1010 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1013 Where "chunk" is the front of the chunk for the purpose of most of
1014 the malloc code, but "mem" is the pointer that is returned to the
1015 user. "Nextchunk" is the beginning of the next contiguous chunk.
1017 Chunks always begin on even word boundaries, so the mem portion
1018 (which is returned to the user) is also on an even word boundary, and
1019 thus double-word aligned.
1021 Free chunks are stored in circular doubly-linked lists, and look like this:
1023 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1024 | Size of previous chunk |
1025 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1026 `head:' | Size of chunk, in bytes |P|
1027 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1028 | Forward pointer to next chunk in list |
1029 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1030 | Back pointer to previous chunk in list |
1031 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1032 | Unused space (may be 0 bytes long) .
1035 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1036 `foot:' | Size of chunk, in bytes |
1037 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1039 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1040 chunk size (which is always a multiple of two words), is an in-use
1041 bit for the *previous* chunk. If that bit is *clear*, then the
1042 word before the current chunk size contains the previous chunk
1043 size, and can be used to find the front of the previous chunk.
1044 (The very first chunk allocated always has this bit set,
1045 preventing access to non-existent (or non-owned) memory.)
1047 Note that the `foot' of the current chunk is actually represented
1048 as the prev_size of the NEXT chunk. (This makes it easier to
1049 deal with alignments etc).
1051 The two exceptions to all this are
1053 1. The special chunk `top', which doesn't bother using the
1054 trailing size field since there is no
1055 next contiguous chunk that would have to index off it. (After
1056 initialization, `top' is forced to always exist. If it would
1057 become less than MINSIZE bytes long, it is replenished via
1060 2. Chunks allocated via mmap, which have the second-lowest-order
1061 bit (IS_MMAPPED) set in their size fields. Because they are
1062 never merged or traversed from any other chunk, they have no
1063 foot size or inuse information.
1065 Available chunks are kept in any of several places (all declared below):
1067 * `av': An array of chunks serving as bin headers for consolidated
1068 chunks. Each bin is doubly linked. The bins are approximately
1069 proportionally (log) spaced. There are a lot of these bins
1070 (128). This may look excessive, but works very well in
1071 practice. All procedures maintain the invariant that no
1072 consolidated chunk physically borders another one. Chunks in
1073 bins are kept in size order, with ties going to the
1074 approximately least recently used chunk.
1076 The chunks in each bin are maintained in decreasing sorted order by
1077 size. This is irrelevant for the small bins, which all contain
1078 the same-sized chunks, but facilitates best-fit allocation for
1079 larger chunks. (These lists are just sequential. Keeping them in
1080 order almost never requires enough traversal to warrant using
1081 fancier ordered data structures.) Chunks of the same size are
1082 linked with the most recently freed at the front, and allocations
1083 are taken from the back. This results in LRU or FIFO allocation
1084 order, which tends to give each chunk an equal opportunity to be
1085 consolidated with adjacent freed chunks, resulting in larger free
1086 chunks and less fragmentation.
1088 * `top': The top-most available chunk (i.e., the one bordering the
1089 end of available memory) is treated specially. It is never
1090 included in any bin, is used only if no other chunk is
1091 available, and is released back to the system if it is very
1092 large (see M_TRIM_THRESHOLD).
1094 * `last_remainder': A bin holding only the remainder of the
1095 most recently split (non-top) chunk. This bin is checked
1096 before other non-fitting chunks, so as to provide better
1097 locality for runs of sequentially allocated chunks.
1099 * Implicitly, through the host system's memory mapping tables.
1100 If supported, requests greater than a threshold are usually
1101 serviced via calls to mmap, and then later released via munmap.
1108 The bins are an array of pairs of pointers serving as the
1109 heads of (initially empty) doubly-linked lists of chunks, laid out
1110 in a way so that each pair can be treated as if it were in a
1111 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1112 and chunks are the same).
1114 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1115 8 bytes apart. Larger bins are approximately logarithmically
1116 spaced. (See the table below.)
1124 4 bins of size 32768
1125 2 bins of size 262144
1126 1 bin of size what's left
1128 There is actually a little bit of slop in the numbers in bin_index
1129 for the sake of speed. This makes no difference elsewhere.
1131 The special chunks `top' and `last_remainder' get their own bins,
1132 (this is implemented via yet more trickery with the av array),
1133 although `top' is never properly linked to its bin since it is
1134 always handled specially.
1138 #define NAV 128 /* number of bins */
1140 typedef struct malloc_chunk* mbinptr;
1142 /* An arena is a configuration of malloc_chunks together with an array
1143 of bins. With multiple threads, it must be locked via a mutex
1144 before changing its data structures. One or more `heaps' are
1145 associated with each arena, except for the main_arena, which is
1146 associated only with the `main heap', i.e. the conventional free
1147 store obtained with calls to MORECORE() (usually sbrk). The `av'
1148 array is never mentioned directly in the code, but instead used via
1149 bin access macros. */
1151 typedef struct _arena {
1152 mbinptr av[2*NAV + 2];
1153 struct _arena *next;
1156 long stat_lock_direct, stat_lock_loop, stat_lock_wait;
1162 /* A heap is a single contiguous memory region holding (coalesceable)
1163 malloc_chunks. It is allocated with mmap() and always starts at an
1164 address aligned to HEAP_MAX_SIZE. Not used unless compiling for
1165 multiple threads. */
1167 typedef struct _heap_info {
1168 arena *ar_ptr; /* Arena for this heap. */
1169 struct _heap_info *prev; /* Previous heap. */
1170 size_t size; /* Current size in bytes. */
1171 size_t pad; /* Make sure the following data is properly aligned. */
1176 Static functions (forward declarations)
1181 static void chunk_free(arena *ar_ptr, mchunkptr p) internal_function;
1182 static mchunkptr chunk_alloc(arena *ar_ptr, INTERNAL_SIZE_T size)
1184 static mchunkptr chunk_realloc(arena *ar_ptr, mchunkptr oldp,
1185 INTERNAL_SIZE_T oldsize, INTERNAL_SIZE_T nb)
1187 static mchunkptr chunk_align(arena *ar_ptr, INTERNAL_SIZE_T nb,
1188 size_t alignment) internal_function;
1189 static int main_trim(size_t pad) internal_function;
1191 static int heap_trim(heap_info *heap, size_t pad) internal_function;
1193 #if defined _LIBC || defined MALLOC_HOOKS
1194 static Void_t* malloc_check(size_t sz, const Void_t *caller);
1195 static void free_check(Void_t* mem, const Void_t *caller);
1196 static Void_t* realloc_check(Void_t* oldmem, size_t bytes,
1197 const Void_t *caller);
1198 static Void_t* memalign_check(size_t alignment, size_t bytes,
1199 const Void_t *caller);
1201 static Void_t* malloc_starter(size_t sz, const Void_t *caller);
1202 static void free_starter(Void_t* mem, const Void_t *caller);
1203 static Void_t* malloc_atfork(size_t sz, const Void_t *caller);
1204 static void free_atfork(Void_t* mem, const Void_t *caller);
1210 static void chunk_free();
1211 static mchunkptr chunk_alloc();
1212 static mchunkptr chunk_realloc();
1213 static mchunkptr chunk_align();
1214 static int main_trim();
1216 static int heap_trim();
1218 #if defined _LIBC || defined MALLOC_HOOKS
1219 static Void_t* malloc_check();
1220 static void free_check();
1221 static Void_t* realloc_check();
1222 static Void_t* memalign_check();
1224 static Void_t* malloc_starter();
1225 static void free_starter();
1226 static Void_t* malloc_atfork();
1227 static void free_atfork();
1233 /* On some platforms we can compile internal, not exported functions better.
1234 Let the environment provide a macro and define it to be empty if it
1235 is not available. */
1236 #ifndef internal_function
1237 # define internal_function
1242 /* sizes, alignments */
1244 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1245 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
1246 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1247 #define MINSIZE (sizeof(struct malloc_chunk))
1249 /* conversion from malloc headers to user pointers, and back */
1251 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1252 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1254 /* pad request bytes into a usable size */
1256 #define request2size(req) \
1257 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1258 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1259 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1261 /* Check if m has acceptable alignment */
1263 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1269 Physical chunk operations
1273 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1275 #define PREV_INUSE 0x1
1277 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1279 #define IS_MMAPPED 0x2
1281 /* Bits to mask off when extracting size */
1283 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1286 /* Ptr to next physical malloc_chunk. */
1288 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1290 /* Ptr to previous physical malloc_chunk */
1292 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1295 /* Treat space at ptr + offset as a chunk */
1297 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1303 Dealing with use bits
1306 /* extract p's inuse bit */
1309 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1311 /* extract inuse bit of previous chunk */
1313 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1315 /* check for mmap()'ed chunk */
1317 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1319 /* set/clear chunk as in use without otherwise disturbing */
1321 #define set_inuse(p) \
1322 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1324 #define clear_inuse(p) \
1325 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1327 /* check/set/clear inuse bits in known places */
1329 #define inuse_bit_at_offset(p, s)\
1330 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1332 #define set_inuse_bit_at_offset(p, s)\
1333 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1335 #define clear_inuse_bit_at_offset(p, s)\
1336 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1342 Dealing with size fields
1345 /* Get size, ignoring use bits */
1347 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1349 /* Set size at head, without disturbing its use bit */
1351 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1353 /* Set size/use ignoring previous bits in header */
1355 #define set_head(p, s) ((p)->size = (s))
1357 /* Set size at footer (only when chunk is not in use) */
1359 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1367 #define bin_at(a, i) ((mbinptr)((char*)&(((a)->av)[2*(i) + 2]) - 2*SIZE_SZ))
1368 #define init_bin(a, i) ((a)->av[2*i+2] = (a)->av[2*i+3] = bin_at((a), i))
1369 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1370 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1373 The first 2 bins are never indexed. The corresponding av cells are instead
1374 used for bookkeeping. This is not to save space, but to simplify
1375 indexing, maintain locality, and avoid some initialization tests.
1378 #define binblocks(a) (bin_at(a,0)->size)/* bitvector of nonempty blocks */
1379 #define top(a) (bin_at(a,0)->fd) /* The topmost chunk */
1380 #define last_remainder(a) (bin_at(a,1)) /* remainder from last split */
1383 Because top initially points to its own bin with initial
1384 zero size, thus forcing extension on the first malloc request,
1385 we avoid having any special code in malloc to check whether
1386 it even exists yet. But we still need to in malloc_extend_top.
1389 #define initial_top(a) ((mchunkptr)bin_at(a, 0))
1393 /* field-extraction macros */
1395 #define first(b) ((b)->fd)
1396 #define last(b) ((b)->bk)
1402 #define bin_index(sz) \
1403 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3):\
1404 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6):\
1405 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9):\
1406 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12):\
1407 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15):\
1408 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18):\
1411 bins for chunks < 512 are all spaced 8 bytes apart, and hold
1412 identically sized chunks. This is exploited in malloc.
1415 #define MAX_SMALLBIN 63
1416 #define MAX_SMALLBIN_SIZE 512
1417 #define SMALLBIN_WIDTH 8
1419 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
1422 Requests are `small' if both the corresponding and the next bin are small
1425 #define is_small_request(nb) ((nb) < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1430 To help compensate for the large number of bins, a one-level index
1431 structure is used for bin-by-bin searching. `binblocks' is a
1432 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1433 have any (possibly) non-empty bins, so they can be skipped over
1434 all at once during during traversals. The bits are NOT always
1435 cleared as soon as all bins in a block are empty, but instead only
1436 when all are noticed to be empty during traversal in malloc.
1439 #define BINBLOCKWIDTH 4 /* bins per block */
1441 /* bin<->block macros */
1443 #define idx2binblock(ix) ((unsigned)1 << ((ix) / BINBLOCKWIDTH))
1444 #define mark_binblock(a, ii) (binblocks(a) |= idx2binblock(ii))
1445 #define clear_binblock(a, ii) (binblocks(a) &= ~(idx2binblock(ii)))
1450 /* Static bookkeeping data */
1452 /* Helper macro to initialize bins */
1453 #define IAV(i) bin_at(&main_arena, i), bin_at(&main_arena, i)
1455 static arena main_arena = {
1458 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1459 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1460 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1461 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1462 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1463 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1464 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1465 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1466 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1467 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1468 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1469 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1470 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1471 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1472 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1473 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1475 &main_arena, /* next */
1478 0, 0, 0, /* stat_lock_direct, stat_lock_loop, stat_lock_wait */
1480 MUTEX_INITIALIZER /* mutex */
1485 /* Thread specific data */
1488 static tsd_key_t arena_key;
1489 static mutex_t list_lock = MUTEX_INITIALIZER;
1493 static int stat_n_heaps = 0;
1494 #define THREAD_STAT(x) x
1496 #define THREAD_STAT(x) do ; while(0)
1499 /* variables holding tunable values */
1501 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
1502 static unsigned long top_pad = DEFAULT_TOP_PAD;
1503 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
1504 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1505 static int check_action = DEFAULT_CHECK_ACTION;
1507 /* The first value returned from sbrk */
1508 static char* sbrk_base = (char*)(-1);
1510 /* The maximum memory obtained from system via sbrk */
1511 static unsigned long max_sbrked_mem = 0;
1513 /* The maximum via either sbrk or mmap (too difficult to track with threads) */
1515 static unsigned long max_total_mem = 0;
1518 /* The total memory obtained from system via sbrk */
1519 #define sbrked_mem (main_arena.size)
1521 /* Tracking mmaps */
1523 static unsigned int n_mmaps = 0;
1524 static unsigned int max_n_mmaps = 0;
1525 static unsigned long mmapped_mem = 0;
1526 static unsigned long max_mmapped_mem = 0;
1531 #define weak_variable
1533 /* In GNU libc we want the hook variables to be weak definitions to
1534 avoid a problem with Emacs. */
1535 #define weak_variable weak_function
1538 /* Already initialized? */
1539 int __malloc_initialized = -1;
1544 /* The following two functions are registered via thread_atfork() to
1545 make sure that the mutexes remain in a consistent state in the
1546 fork()ed version of a thread. Also adapt the malloc and free hooks
1547 temporarily, because the `atfork' handler mechanism may use
1548 malloc/free internally (e.g. in LinuxThreads). */
1550 #if defined _LIBC || defined MALLOC_HOOKS
1551 static __malloc_ptr_t (*save_malloc_hook) __MALLOC_P ((size_t __size,
1552 const __malloc_ptr_t));
1553 static void (*save_free_hook) __MALLOC_P ((__malloc_ptr_t __ptr,
1554 const __malloc_ptr_t));
1555 static Void_t* save_arena;
1559 ptmalloc_lock_all __MALLOC_P((void))
1563 (void)mutex_lock(&list_lock);
1564 for(ar_ptr = &main_arena;;) {
1565 (void)mutex_lock(&ar_ptr->mutex);
1566 ar_ptr = ar_ptr->next;
1567 if(ar_ptr == &main_arena) break;
1569 #if defined _LIBC || defined MALLOC_HOOKS
1570 save_malloc_hook = __malloc_hook;
1571 save_free_hook = __free_hook;
1572 __malloc_hook = malloc_atfork;
1573 __free_hook = free_atfork;
1574 /* Only the current thread may perform malloc/free calls now. */
1575 tsd_getspecific(arena_key, save_arena);
1576 tsd_setspecific(arena_key, (Void_t*)0);
1581 ptmalloc_unlock_all __MALLOC_P((void))
1585 #if defined _LIBC || defined MALLOC_HOOKS
1586 tsd_setspecific(arena_key, save_arena);
1587 __malloc_hook = save_malloc_hook;
1588 __free_hook = save_free_hook;
1590 for(ar_ptr = &main_arena;;) {
1591 (void)mutex_unlock(&ar_ptr->mutex);
1592 ar_ptr = ar_ptr->next;
1593 if(ar_ptr == &main_arena) break;
1595 (void)mutex_unlock(&list_lock);
1599 ptmalloc_init_all __MALLOC_P((void))
1603 #if defined _LIBC || defined MALLOC_HOOKS
1604 tsd_setspecific(arena_key, save_arena);
1605 __malloc_hook = save_malloc_hook;
1606 __free_hook = save_free_hook;
1608 for(ar_ptr = &main_arena;;) {
1609 (void)mutex_init(&ar_ptr->mutex);
1610 ar_ptr = ar_ptr->next;
1611 if(ar_ptr == &main_arena) break;
1613 (void)mutex_init(&list_lock);
1618 /* Initialization routine. */
1621 static void ptmalloc_init __MALLOC_P ((void)) __attribute__ ((constructor));
1625 ptmalloc_init __MALLOC_P((void))
1628 ptmalloc_init __MALLOC_P((void))
1631 #if defined _LIBC || defined MALLOC_HOOKS
1635 if(__malloc_initialized >= 0) return;
1636 __malloc_initialized = 0;
1638 #if defined _LIBC || defined MALLOC_HOOKS
1639 /* With some threads implementations, creating thread-specific data
1640 or initializing a mutex may call malloc() itself. Provide a
1641 simple starter version (realloc() won't work). */
1642 save_malloc_hook = __malloc_hook;
1643 save_free_hook = __free_hook;
1644 __malloc_hook = malloc_starter;
1645 __free_hook = free_starter;
1648 /* Initialize the pthreads interface. */
1649 if (__pthread_initialize != NULL)
1650 __pthread_initialize();
1652 mutex_init(&main_arena.mutex);
1653 mutex_init(&list_lock);
1654 tsd_key_create(&arena_key, NULL);
1655 tsd_setspecific(arena_key, (Void_t *)&main_arena);
1656 thread_atfork(ptmalloc_lock_all, ptmalloc_unlock_all, ptmalloc_init_all);
1657 #endif /* !defined NO_THREADS */
1658 #if defined _LIBC || defined MALLOC_HOOKS
1659 if((s = getenv("MALLOC_TRIM_THRESHOLD_")))
1660 mALLOPt(M_TRIM_THRESHOLD, atoi(s));
1661 if((s = getenv("MALLOC_TOP_PAD_")))
1662 mALLOPt(M_TOP_PAD, atoi(s));
1663 if((s = getenv("MALLOC_MMAP_THRESHOLD_")))
1664 mALLOPt(M_MMAP_THRESHOLD, atoi(s));
1665 if((s = getenv("MALLOC_MMAP_MAX_")))
1666 mALLOPt(M_MMAP_MAX, atoi(s));
1667 s = getenv("MALLOC_CHECK_");
1669 __malloc_hook = save_malloc_hook;
1670 __free_hook = save_free_hook;
1673 if(s[0]) mALLOPt(M_CHECK_ACTION, (int)(s[0] - '0'));
1674 __malloc_check_init();
1676 if(__malloc_initialize_hook != NULL)
1677 (*__malloc_initialize_hook)();
1679 __malloc_initialized = 1;
1682 /* There are platforms (e.g. Hurd) with a link-time hook mechanism. */
1683 #ifdef thread_atfork_static
1684 thread_atfork_static(ptmalloc_lock_all, ptmalloc_unlock_all, \
1688 #if defined _LIBC || defined MALLOC_HOOKS
1690 /* Hooks for debugging versions. The initial hooks just call the
1691 initialization routine, then do the normal work. */
1695 malloc_hook_ini(size_t sz, const __malloc_ptr_t caller)
1698 malloc_hook_ini(size_t sz)
1700 malloc_hook_ini(sz) size_t sz;
1704 __malloc_hook = NULL;
1705 __realloc_hook = NULL;
1706 __memalign_hook = NULL;
1713 realloc_hook_ini(Void_t* ptr, size_t sz, const __malloc_ptr_t caller)
1715 realloc_hook_ini(ptr, sz, caller)
1716 Void_t* ptr; size_t sz; const __malloc_ptr_t caller;
1719 __malloc_hook = NULL;
1720 __realloc_hook = NULL;
1721 __memalign_hook = NULL;
1723 return rEALLOc(ptr, sz);
1728 memalign_hook_ini(size_t sz, size_t alignment, const __malloc_ptr_t caller)
1730 memalign_hook_ini(sz, alignment, caller)
1731 size_t sz; size_t alignment; const __malloc_ptr_t caller;
1734 __malloc_hook = NULL;
1735 __realloc_hook = NULL;
1736 __memalign_hook = NULL;
1738 return mEMALIGn(sz, alignment);
1741 void weak_variable (*__malloc_initialize_hook) __MALLOC_P ((void)) = NULL;
1742 void weak_variable (*__free_hook) __MALLOC_P ((__malloc_ptr_t __ptr,
1743 const __malloc_ptr_t)) = NULL;
1744 __malloc_ptr_t weak_variable (*__malloc_hook)
1745 __MALLOC_P ((size_t __size, const __malloc_ptr_t)) = malloc_hook_ini;
1746 __malloc_ptr_t weak_variable (*__realloc_hook)
1747 __MALLOC_P ((__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t))
1749 __malloc_ptr_t weak_variable (*__memalign_hook)
1750 __MALLOC_P ((size_t __size, size_t __alignment, const __malloc_ptr_t))
1751 = memalign_hook_ini;
1752 void weak_variable (*__after_morecore_hook) __MALLOC_P ((void)) = NULL;
1754 /* Activate a standard set of debugging hooks. */
1756 __malloc_check_init()
1758 __malloc_hook = malloc_check;
1759 __free_hook = free_check;
1760 __realloc_hook = realloc_check;
1761 __memalign_hook = memalign_check;
1762 if(check_action == 1)
1763 fprintf(stderr, "malloc: using debugging hooks\n");
1772 /* Routines dealing with mmap(). */
1776 #ifndef MAP_ANONYMOUS
1778 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1780 #define MMAP(size, prot, flags) ((dev_zero_fd < 0) ? \
1781 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1782 mmap(0, (size), (prot), (flags), dev_zero_fd, 0)) : \
1783 mmap(0, (size), (prot), (flags), dev_zero_fd, 0))
1787 #define MMAP(size, prot, flags) \
1788 (mmap(0, (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
1792 #if defined __GNUC__ && __GNUC__ >= 2
1793 /* This function is only called from one place, inline it. */
1799 mmap_chunk(size_t size)
1801 mmap_chunk(size) size_t size;
1804 size_t page_mask = malloc_getpagesize - 1;
1807 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1809 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1810 * there is no following chunk whose prev_size field could be used.
1812 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1814 p = (mchunkptr)MMAP(size, PROT_READ|PROT_WRITE, MAP_PRIVATE);
1815 if(p == (mchunkptr) MAP_FAILED) return 0;
1818 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1820 /* We demand that eight bytes into a page must be 8-byte aligned. */
1821 assert(aligned_OK(chunk2mem(p)));
1823 /* The offset to the start of the mmapped region is stored
1824 * in the prev_size field of the chunk; normally it is zero,
1825 * but that can be changed in memalign().
1828 set_head(p, size|IS_MMAPPED);
1830 mmapped_mem += size;
1831 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1832 max_mmapped_mem = mmapped_mem;
1834 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1835 max_total_mem = mmapped_mem + sbrked_mem;
1841 static void munmap_chunk(mchunkptr p)
1843 static void munmap_chunk(p) mchunkptr p;
1846 INTERNAL_SIZE_T size = chunksize(p);
1849 assert (chunk_is_mmapped(p));
1850 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1851 assert((n_mmaps > 0));
1852 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1855 mmapped_mem -= (size + p->prev_size);
1857 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1859 /* munmap returns non-zero on failure */
1866 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1868 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1871 size_t page_mask = malloc_getpagesize - 1;
1872 INTERNAL_SIZE_T offset = p->prev_size;
1873 INTERNAL_SIZE_T size = chunksize(p);
1876 assert (chunk_is_mmapped(p));
1877 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1878 assert((n_mmaps > 0));
1879 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1881 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1882 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1884 cp = (char *)mremap((char *)p - offset, size + offset, new_size,
1887 if (cp == (char *)-1) return 0;
1889 p = (mchunkptr)(cp + offset);
1891 assert(aligned_OK(chunk2mem(p)));
1893 assert((p->prev_size == offset));
1894 set_head(p, (new_size - offset)|IS_MMAPPED);
1896 mmapped_mem -= size + offset;
1897 mmapped_mem += new_size;
1898 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1899 max_mmapped_mem = mmapped_mem;
1901 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1902 max_total_mem = mmapped_mem + sbrked_mem;
1907 #endif /* HAVE_MREMAP */
1909 #endif /* HAVE_MMAP */
1913 /* Managing heaps and arenas (for concurrent threads) */
1917 /* Create a new heap. size is automatically rounded up to a multiple
1918 of the page size. */
1923 new_heap(size_t size)
1925 new_heap(size) size_t size;
1928 size_t page_mask = malloc_getpagesize - 1;
1933 if(size+top_pad < HEAP_MIN_SIZE)
1934 size = HEAP_MIN_SIZE;
1935 else if(size+top_pad <= HEAP_MAX_SIZE)
1937 else if(size > HEAP_MAX_SIZE)
1940 size = HEAP_MAX_SIZE;
1941 size = (size + page_mask) & ~page_mask;
1943 /* A memory region aligned to a multiple of HEAP_MAX_SIZE is needed.
1944 No swap space needs to be reserved for the following large
1945 mapping (on Linux, this is the case for all non-writable mappings
1947 p1 = (char *)MMAP(HEAP_MAX_SIZE<<1, PROT_NONE, MAP_PRIVATE|MAP_NORESERVE);
1948 if(p1 == MAP_FAILED)
1950 p2 = (char *)(((unsigned long)p1 + HEAP_MAX_SIZE) & ~(HEAP_MAX_SIZE-1));
1953 munmap(p2 + HEAP_MAX_SIZE, HEAP_MAX_SIZE - ul);
1954 if(mprotect(p2, size, PROT_READ|PROT_WRITE) != 0) {
1955 munmap(p2, HEAP_MAX_SIZE);
1958 h = (heap_info *)p2;
1960 THREAD_STAT(stat_n_heaps++);
1964 /* Grow or shrink a heap. size is automatically rounded up to a
1965 multiple of the page size if it is positive. */
1969 grow_heap(heap_info *h, long diff)
1971 grow_heap(h, diff) heap_info *h; long diff;
1974 size_t page_mask = malloc_getpagesize - 1;
1978 diff = (diff + page_mask) & ~page_mask;
1979 new_size = (long)h->size + diff;
1980 if(new_size > HEAP_MAX_SIZE)
1982 if(mprotect((char *)h + h->size, diff, PROT_READ|PROT_WRITE) != 0)
1985 new_size = (long)h->size + diff;
1986 if(new_size < (long)sizeof(*h))
1988 if(mprotect((char *)h + new_size, -diff, PROT_NONE) != 0)
1995 /* Delete a heap. */
1997 #define delete_heap(heap) munmap((char*)(heap), HEAP_MAX_SIZE)
1999 /* arena_get() acquires an arena and locks the corresponding mutex.
2000 First, try the one last locked successfully by this thread. (This
2001 is the common case and handled with a macro for speed.) Then, loop
2002 once over the circularly linked list of arenas. If no arena is
2003 readily available, create a new one. */
2005 #define arena_get(ptr, size) do { \
2006 Void_t *vptr = NULL; \
2007 ptr = (arena *)tsd_getspecific(arena_key, vptr); \
2008 if(ptr && !mutex_trylock(&ptr->mutex)) { \
2009 THREAD_STAT(++(ptr->stat_lock_direct)); \
2011 ptr = arena_get2(ptr, (size)); \
2017 arena_get2(arena *a_tsd, size_t size)
2019 arena_get2(a_tsd, size) arena *a_tsd; size_t size;
2026 unsigned long misalign;
2029 a = a_tsd = &main_arena;
2033 /* This can only happen while initializing the new arena. */
2034 (void)mutex_lock(&main_arena.mutex);
2035 THREAD_STAT(++(main_arena.stat_lock_wait));
2040 /* Check the global, circularly linked list for available arenas. */
2043 if(!mutex_trylock(&a->mutex)) {
2044 THREAD_STAT(++(a->stat_lock_loop));
2045 tsd_setspecific(arena_key, (Void_t *)a);
2049 } while(a != a_tsd);
2051 /* If not even the list_lock can be obtained, try again. This can
2052 happen during `atfork', or for example on systems where thread
2053 creation makes it temporarily impossible to obtain _any_
2055 if(mutex_trylock(&list_lock)) {
2059 (void)mutex_unlock(&list_lock);
2061 /* Nothing immediately available, so generate a new arena. */
2062 h = new_heap(size + (sizeof(*h) + sizeof(*a) + MALLOC_ALIGNMENT));
2065 a = h->ar_ptr = (arena *)(h+1);
2066 for(i=0; i<NAV; i++)
2070 tsd_setspecific(arena_key, (Void_t *)a);
2071 mutex_init(&a->mutex);
2072 i = mutex_lock(&a->mutex); /* remember result */
2074 /* Set up the top chunk, with proper alignment. */
2075 ptr = (char *)(a + 1);
2076 misalign = (unsigned long)chunk2mem(ptr) & MALLOC_ALIGN_MASK;
2078 ptr += MALLOC_ALIGNMENT - misalign;
2079 top(a) = (mchunkptr)ptr;
2080 set_head(top(a), (((char*)h + h->size) - ptr) | PREV_INUSE);
2082 /* Add the new arena to the list. */
2083 (void)mutex_lock(&list_lock);
2084 a->next = main_arena.next;
2085 main_arena.next = a;
2086 (void)mutex_unlock(&list_lock);
2088 if(i) /* locking failed; keep arena for further attempts later */
2091 THREAD_STAT(++(a->stat_lock_loop));
2095 /* find the heap and corresponding arena for a given ptr */
2097 #define heap_for_ptr(ptr) \
2098 ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1)))
2099 #define arena_for_ptr(ptr) \
2100 (((mchunkptr)(ptr) < top(&main_arena) && (char *)(ptr) >= sbrk_base) ? \
2101 &main_arena : heap_for_ptr(ptr)->ar_ptr)
2103 #else /* defined(NO_THREADS) */
2105 /* Without concurrent threads, there is only one arena. */
2107 #define arena_get(ptr, sz) (ptr = &main_arena)
2108 #define arena_for_ptr(ptr) (&main_arena)
2110 #endif /* !defined(NO_THREADS) */
2122 These routines make a number of assertions about the states
2123 of data structures that should be true at all times. If any
2124 are not true, it's very likely that a user program has somehow
2125 trashed memory. (It's also possible that there is a coding error
2126 in malloc. In which case, please report it!)
2130 static void do_check_chunk(arena *ar_ptr, mchunkptr p)
2132 static void do_check_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
2135 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
2137 /* No checkable chunk is mmapped */
2138 assert(!chunk_is_mmapped(p));
2141 if(ar_ptr != &main_arena) {
2142 heap_info *heap = heap_for_ptr(p);
2143 assert(heap->ar_ptr == ar_ptr);
2144 assert((char *)p + sz <= (char *)heap + heap->size);
2149 /* Check for legal address ... */
2150 assert((char*)p >= sbrk_base);
2151 if (p != top(ar_ptr))
2152 assert((char*)p + sz <= (char*)top(ar_ptr));
2154 assert((char*)p + sz <= sbrk_base + sbrked_mem);
2160 static void do_check_free_chunk(arena *ar_ptr, mchunkptr p)
2162 static void do_check_free_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
2165 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
2166 mchunkptr next = chunk_at_offset(p, sz);
2168 do_check_chunk(ar_ptr, p);
2170 /* Check whether it claims to be free ... */
2173 /* Must have OK size and fields */
2174 assert((long)sz >= (long)MINSIZE);
2175 assert((sz & MALLOC_ALIGN_MASK) == 0);
2176 assert(aligned_OK(chunk2mem(p)));
2177 /* ... matching footer field */
2178 assert(next->prev_size == sz);
2179 /* ... and is fully consolidated */
2180 assert(prev_inuse(p));
2181 assert (next == top(ar_ptr) || inuse(next));
2183 /* ... and has minimally sane links */
2184 assert(p->fd->bk == p);
2185 assert(p->bk->fd == p);
2189 static void do_check_inuse_chunk(arena *ar_ptr, mchunkptr p)
2191 static void do_check_inuse_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
2194 mchunkptr next = next_chunk(p);
2195 do_check_chunk(ar_ptr, p);
2197 /* Check whether it claims to be in use ... */
2200 /* ... whether its size is OK (it might be a fencepost) ... */
2201 assert(chunksize(p) >= MINSIZE || next->size == (0|PREV_INUSE));
2203 /* ... and is surrounded by OK chunks.
2204 Since more things can be checked with free chunks than inuse ones,
2205 if an inuse chunk borders them and debug is on, it's worth doing them.
2209 mchunkptr prv = prev_chunk(p);
2210 assert(next_chunk(prv) == p);
2211 do_check_free_chunk(ar_ptr, prv);
2213 if (next == top(ar_ptr))
2215 assert(prev_inuse(next));
2216 assert(chunksize(next) >= MINSIZE);
2218 else if (!inuse(next))
2219 do_check_free_chunk(ar_ptr, next);
2224 static void do_check_malloced_chunk(arena *ar_ptr,
2225 mchunkptr p, INTERNAL_SIZE_T s)
2227 static void do_check_malloced_chunk(ar_ptr, p, s)
2228 arena *ar_ptr; mchunkptr p; INTERNAL_SIZE_T s;
2231 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
2234 do_check_inuse_chunk(ar_ptr, p);
2236 /* Legal size ... */
2237 assert((long)sz >= (long)MINSIZE);
2238 assert((sz & MALLOC_ALIGN_MASK) == 0);
2240 assert(room < (long)MINSIZE);
2242 /* ... and alignment */
2243 assert(aligned_OK(chunk2mem(p)));
2246 /* ... and was allocated at front of an available chunk */
2247 assert(prev_inuse(p));
2252 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
2253 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2254 #define check_chunk(A,P) do_check_chunk(A,P)
2255 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2257 #define check_free_chunk(A,P)
2258 #define check_inuse_chunk(A,P)
2259 #define check_chunk(A,P)
2260 #define check_malloced_chunk(A,P,N)
2266 Macro-based internal utilities
2271 Linking chunks in bin lists.
2272 Call these only with variables, not arbitrary expressions, as arguments.
2276 Place chunk p of size s in its bin, in size order,
2277 putting it ahead of others of same size.
2281 #define frontlink(A, P, S, IDX, BK, FD) \
2283 if (S < MAX_SMALLBIN_SIZE) \
2285 IDX = smallbin_index(S); \
2286 mark_binblock(A, IDX); \
2287 BK = bin_at(A, IDX); \
2291 FD->bk = BK->fd = P; \
2295 IDX = bin_index(S); \
2296 BK = bin_at(A, IDX); \
2298 if (FD == BK) mark_binblock(A, IDX); \
2301 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
2306 FD->bk = BK->fd = P; \
2311 /* take a chunk off a list */
2313 #define unlink(P, BK, FD) \
2321 /* Place p as the last remainder */
2323 #define link_last_remainder(A, P) \
2325 last_remainder(A)->fd = last_remainder(A)->bk = P; \
2326 P->fd = P->bk = last_remainder(A); \
2329 /* Clear the last_remainder bin */
2331 #define clear_last_remainder(A) \
2332 (last_remainder(A)->fd = last_remainder(A)->bk = last_remainder(A))
2339 Extend the top-most chunk by obtaining memory from system.
2340 Main interface to sbrk (but see also malloc_trim).
2343 #if defined __GNUC__ && __GNUC__ >= 2
2344 /* This function is called only from one place, inline it. */
2350 malloc_extend_top(arena *ar_ptr, INTERNAL_SIZE_T nb)
2352 malloc_extend_top(ar_ptr, nb) arena *ar_ptr; INTERNAL_SIZE_T nb;
2355 unsigned long pagesz = malloc_getpagesize;
2356 mchunkptr old_top = top(ar_ptr); /* Record state of old top */
2357 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2358 INTERNAL_SIZE_T top_size; /* new size of top chunk */
2361 if(ar_ptr == &main_arena) {
2364 char* brk; /* return value from sbrk */
2365 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
2366 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
2367 char* new_brk; /* return of 2nd sbrk call */
2368 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
2370 /* Pad request with top_pad plus minimal overhead */
2371 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
2373 /* If not the first time through, round to preserve page boundary */
2374 /* Otherwise, we need to correct to a page size below anyway. */
2375 /* (We also correct below if an intervening foreign sbrk call.) */
2377 if (sbrk_base != (char*)(-1))
2378 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2380 brk = (char*)(MORECORE (sbrk_size));
2382 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2383 if (brk == (char*)(MORECORE_FAILURE) ||
2384 (brk < old_end && old_top != initial_top(&main_arena)))
2387 #if defined _LIBC || defined MALLOC_HOOKS
2388 /* Call the `morecore' hook if necessary. */
2389 if (__after_morecore_hook)
2390 (*__after_morecore_hook) ();
2393 sbrked_mem += sbrk_size;
2395 if (brk == old_end) { /* can just add bytes to current top */
2396 top_size = sbrk_size + old_top_size;
2397 set_head(old_top, top_size | PREV_INUSE);
2398 old_top = 0; /* don't free below */
2400 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
2403 /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2404 sbrked_mem += brk - (char*)old_end;
2406 /* Guarantee alignment of first new chunk made from this space */
2407 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2408 if (front_misalign > 0) {
2409 correction = (MALLOC_ALIGNMENT) - front_misalign;
2414 /* Guarantee the next brk will be at a page boundary */
2415 correction += pagesz - ((unsigned long)(brk + sbrk_size) & (pagesz - 1));
2417 /* Allocate correction */
2418 new_brk = (char*)(MORECORE (correction));
2419 if (new_brk == (char*)(MORECORE_FAILURE)) return;
2421 #if defined _LIBC || defined MALLOC_HOOKS
2422 /* Call the `morecore' hook if necessary. */
2423 if (__after_morecore_hook)
2424 (*__after_morecore_hook) ();
2427 sbrked_mem += correction;
2429 top(&main_arena) = (mchunkptr)brk;
2430 top_size = new_brk - brk + correction;
2431 set_head(top(&main_arena), top_size | PREV_INUSE);
2433 if (old_top == initial_top(&main_arena))
2434 old_top = 0; /* don't free below */
2437 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2438 max_sbrked_mem = sbrked_mem;
2440 if ((unsigned long)(mmapped_mem + sbrked_mem) >
2441 (unsigned long)max_total_mem)
2442 max_total_mem = mmapped_mem + sbrked_mem;
2446 } else { /* ar_ptr != &main_arena */
2447 heap_info *old_heap, *heap;
2448 size_t old_heap_size;
2450 if(old_top_size < MINSIZE) /* this should never happen */
2453 /* First try to extend the current heap. */
2454 if(MINSIZE + nb <= old_top_size)
2456 old_heap = heap_for_ptr(old_top);
2457 old_heap_size = old_heap->size;
2458 if(grow_heap(old_heap, MINSIZE + nb - old_top_size) == 0) {
2459 ar_ptr->size += old_heap->size - old_heap_size;
2460 top_size = ((char *)old_heap + old_heap->size) - (char *)old_top;
2461 set_head(old_top, top_size | PREV_INUSE);
2465 /* A new heap must be created. */
2466 heap = new_heap(nb + (MINSIZE + sizeof(*heap)));
2469 heap->ar_ptr = ar_ptr;
2470 heap->prev = old_heap;
2471 ar_ptr->size += heap->size;
2473 /* Set up the new top, so we can safely use chunk_free() below. */
2474 top(ar_ptr) = chunk_at_offset(heap, sizeof(*heap));
2475 top_size = heap->size - sizeof(*heap);
2476 set_head(top(ar_ptr), top_size | PREV_INUSE);
2478 #endif /* !defined(NO_THREADS) */
2480 /* We always land on a page boundary */
2481 assert(((unsigned long)((char*)top(ar_ptr) + top_size) & (pagesz-1)) == 0);
2483 /* Setup fencepost and free the old top chunk. */
2485 /* The fencepost takes at least MINSIZE bytes, because it might
2486 become the top chunk again later. Note that a footer is set
2487 up, too, although the chunk is marked in use. */
2488 old_top_size -= MINSIZE;
2489 set_head(chunk_at_offset(old_top, old_top_size + 2*SIZE_SZ), 0|PREV_INUSE);
2490 if(old_top_size >= MINSIZE) {
2491 set_head(chunk_at_offset(old_top, old_top_size), (2*SIZE_SZ)|PREV_INUSE);
2492 set_foot(chunk_at_offset(old_top, old_top_size), (2*SIZE_SZ));
2493 set_head_size(old_top, old_top_size);
2494 chunk_free(ar_ptr, old_top);
2496 set_head(old_top, (old_top_size + 2*SIZE_SZ)|PREV_INUSE);
2497 set_foot(old_top, (old_top_size + 2*SIZE_SZ));
2505 /* Main public routines */
2511 The requested size is first converted into a usable form, `nb'.
2512 This currently means to add 4 bytes overhead plus possibly more to
2513 obtain 8-byte alignment and/or to obtain a size of at least
2514 MINSIZE (currently 16, 24, or 32 bytes), the smallest allocatable
2515 size. (All fits are considered `exact' if they are within MINSIZE
2518 From there, the first successful of the following steps is taken:
2520 1. The bin corresponding to the request size is scanned, and if
2521 a chunk of exactly the right size is found, it is taken.
2523 2. The most recently remaindered chunk is used if it is big
2524 enough. This is a form of (roving) first fit, used only in
2525 the absence of exact fits. Runs of consecutive requests use
2526 the remainder of the chunk used for the previous such request
2527 whenever possible. This limited use of a first-fit style
2528 allocation strategy tends to give contiguous chunks
2529 coextensive lifetimes, which improves locality and can reduce
2530 fragmentation in the long run.
2532 3. Other bins are scanned in increasing size order, using a
2533 chunk big enough to fulfill the request, and splitting off
2534 any remainder. This search is strictly by best-fit; i.e.,
2535 the smallest (with ties going to approximately the least
2536 recently used) chunk that fits is selected.
2538 4. If large enough, the chunk bordering the end of memory
2539 (`top') is split off. (This use of `top' is in accord with
2540 the best-fit search rule. In effect, `top' is treated as
2541 larger (and thus less well fitting) than any other available
2542 chunk since it can be extended to be as large as necessary
2543 (up to system limitations).
2545 5. If the request size meets the mmap threshold and the
2546 system supports mmap, and there are few enough currently
2547 allocated mmapped regions, and a call to mmap succeeds,
2548 the request is allocated via direct memory mapping.
2550 6. Otherwise, the top of memory is extended by
2551 obtaining more space from the system (normally using sbrk,
2552 but definable to anything else via the MORECORE macro).
2553 Memory is gathered from the system (in system page-sized
2554 units) in a way that allows chunks obtained across different
2555 sbrk calls to be consolidated, but does not require
2556 contiguous memory. Thus, it should be safe to intersperse
2557 mallocs with other sbrk calls.
2560 All allocations are made from the `lowest' part of any found
2561 chunk. (The implementation invariant is that prev_inuse is
2562 always true of any allocated chunk; i.e., that each allocated
2563 chunk borders either a previously allocated and still in-use chunk,
2564 or the base of its memory arena.)
2569 Void_t* mALLOc(size_t bytes)
2571 Void_t* mALLOc(bytes) size_t bytes;
2575 INTERNAL_SIZE_T nb; /* padded request size */
2578 #if defined _LIBC || defined MALLOC_HOOKS
2579 if (__malloc_hook != NULL) {
2582 #if defined __GNUC__ && __GNUC__ >= 2
2583 result = (*__malloc_hook)(bytes, __builtin_return_address (0));
2585 result = (*__malloc_hook)(bytes, NULL);
2591 nb = request2size(bytes);
2592 arena_get(ar_ptr, nb);
2595 victim = chunk_alloc(ar_ptr, nb);
2596 (void)mutex_unlock(&ar_ptr->mutex);
2598 /* Maybe the failure is due to running out of mmapped areas. */
2599 if(ar_ptr != &main_arena) {
2600 (void)mutex_lock(&main_arena.mutex);
2601 victim = chunk_alloc(&main_arena, nb);
2602 (void)mutex_unlock(&main_arena.mutex);
2604 if(!victim) return 0;
2606 return chunk2mem(victim);
2612 chunk_alloc(arena *ar_ptr, INTERNAL_SIZE_T nb)
2614 chunk_alloc(ar_ptr, nb) arena *ar_ptr; INTERNAL_SIZE_T nb;
2617 mchunkptr victim; /* inspected/selected chunk */
2618 INTERNAL_SIZE_T victim_size; /* its size */
2619 int idx; /* index for bin traversal */
2620 mbinptr bin; /* associated bin */
2621 mchunkptr remainder; /* remainder from a split */
2622 long remainder_size; /* its size */
2623 int remainder_index; /* its bin index */
2624 unsigned long block; /* block traverser bit */
2625 int startidx; /* first bin of a traversed block */
2626 mchunkptr fwd; /* misc temp for linking */
2627 mchunkptr bck; /* misc temp for linking */
2628 mbinptr q; /* misc temp */
2631 /* Check for exact match in a bin */
2633 if (is_small_request(nb)) /* Faster version for small requests */
2635 idx = smallbin_index(nb);
2637 /* No traversal or size check necessary for small bins. */
2639 q = bin_at(ar_ptr, idx);
2642 /* Also scan the next one, since it would have a remainder < MINSIZE */
2650 victim_size = chunksize(victim);
2651 unlink(victim, bck, fwd);
2652 set_inuse_bit_at_offset(victim, victim_size);
2653 check_malloced_chunk(ar_ptr, victim, nb);
2657 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2662 idx = bin_index(nb);
2663 bin = bin_at(ar_ptr, idx);
2665 for (victim = last(bin); victim != bin; victim = victim->bk)
2667 victim_size = chunksize(victim);
2668 remainder_size = victim_size - nb;
2670 if (remainder_size >= (long)MINSIZE) /* too big */
2672 --idx; /* adjust to rescan below after checking last remainder */
2676 else if (remainder_size >= 0) /* exact fit */
2678 unlink(victim, bck, fwd);
2679 set_inuse_bit_at_offset(victim, victim_size);
2680 check_malloced_chunk(ar_ptr, victim, nb);
2689 /* Try to use the last split-off remainder */
2691 if ( (victim = last_remainder(ar_ptr)->fd) != last_remainder(ar_ptr))
2693 victim_size = chunksize(victim);
2694 remainder_size = victim_size - nb;
2696 if (remainder_size >= (long)MINSIZE) /* re-split */
2698 remainder = chunk_at_offset(victim, nb);
2699 set_head(victim, nb | PREV_INUSE);
2700 link_last_remainder(ar_ptr, remainder);
2701 set_head(remainder, remainder_size | PREV_INUSE);
2702 set_foot(remainder, remainder_size);
2703 check_malloced_chunk(ar_ptr, victim, nb);
2707 clear_last_remainder(ar_ptr);
2709 if (remainder_size >= 0) /* exhaust */
2711 set_inuse_bit_at_offset(victim, victim_size);
2712 check_malloced_chunk(ar_ptr, victim, nb);
2716 /* Else place in bin */
2718 frontlink(ar_ptr, victim, victim_size, remainder_index, bck, fwd);
2722 If there are any possibly nonempty big-enough blocks,
2723 search for best fitting chunk by scanning bins in blockwidth units.
2726 if ( (block = idx2binblock(idx)) <= binblocks(ar_ptr))
2729 /* Get to the first marked block */
2731 if ( (block & binblocks(ar_ptr)) == 0)
2733 /* force to an even block boundary */
2734 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2736 while ((block & binblocks(ar_ptr)) == 0)
2738 idx += BINBLOCKWIDTH;
2743 /* For each possibly nonempty block ... */
2746 startidx = idx; /* (track incomplete blocks) */
2747 q = bin = bin_at(ar_ptr, idx);
2749 /* For each bin in this block ... */
2752 /* Find and use first big enough chunk ... */
2754 for (victim = last(bin); victim != bin; victim = victim->bk)
2756 victim_size = chunksize(victim);
2757 remainder_size = victim_size - nb;
2759 if (remainder_size >= (long)MINSIZE) /* split */
2761 remainder = chunk_at_offset(victim, nb);
2762 set_head(victim, nb | PREV_INUSE);
2763 unlink(victim, bck, fwd);
2764 link_last_remainder(ar_ptr, remainder);
2765 set_head(remainder, remainder_size | PREV_INUSE);
2766 set_foot(remainder, remainder_size);
2767 check_malloced_chunk(ar_ptr, victim, nb);
2771 else if (remainder_size >= 0) /* take */
2773 set_inuse_bit_at_offset(victim, victim_size);
2774 unlink(victim, bck, fwd);
2775 check_malloced_chunk(ar_ptr, victim, nb);
2781 bin = next_bin(bin);
2783 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2785 /* Clear out the block bit. */
2787 do /* Possibly backtrack to try to clear a partial block */
2789 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2791 binblocks(ar_ptr) &= ~block;
2796 } while (first(q) == q);
2798 /* Get to the next possibly nonempty block */
2800 if ( (block <<= 1) <= binblocks(ar_ptr) && (block != 0) )
2802 while ((block & binblocks(ar_ptr)) == 0)
2804 idx += BINBLOCKWIDTH;
2814 /* Try to use top chunk */
2816 /* Require that there be a remainder, ensuring top always exists */
2817 if ( (remainder_size = chunksize(top(ar_ptr)) - nb) < (long)MINSIZE)
2821 /* If big and would otherwise need to extend, try to use mmap instead */
2822 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2823 (victim = mmap_chunk(nb)) != 0)
2828 malloc_extend_top(ar_ptr, nb);
2829 if ((remainder_size = chunksize(top(ar_ptr)) - nb) < (long)MINSIZE)
2830 return 0; /* propagate failure */
2833 victim = top(ar_ptr);
2834 set_head(victim, nb | PREV_INUSE);
2835 top(ar_ptr) = chunk_at_offset(victim, nb);
2836 set_head(top(ar_ptr), remainder_size | PREV_INUSE);
2837 check_malloced_chunk(ar_ptr, victim, nb);
2851 1. free(0) has no effect.
2853 2. If the chunk was allocated via mmap, it is released via munmap().
2855 3. If a returned chunk borders the current high end of memory,
2856 it is consolidated into the top, and if the total unused
2857 topmost memory exceeds the trim threshold, malloc_trim is
2860 4. Other chunks are consolidated as they arrive, and
2861 placed in corresponding bins. (This includes the case of
2862 consolidating with the current `last_remainder').
2868 void fREe(Void_t* mem)
2870 void fREe(mem) Void_t* mem;
2874 mchunkptr p; /* chunk corresponding to mem */
2876 #if defined _LIBC || defined MALLOC_HOOKS
2877 if (__free_hook != NULL) {
2878 #if defined __GNUC__ && __GNUC__ >= 2
2879 (*__free_hook)(mem, __builtin_return_address (0));
2881 (*__free_hook)(mem, NULL);
2887 if (mem == 0) /* free(0) has no effect */
2893 if (chunk_is_mmapped(p)) /* release mmapped memory. */
2900 ar_ptr = arena_for_ptr(p);
2902 if(!mutex_trylock(&ar_ptr->mutex))
2903 ++(ar_ptr->stat_lock_direct);
2905 (void)mutex_lock(&ar_ptr->mutex);
2906 ++(ar_ptr->stat_lock_wait);
2909 (void)mutex_lock(&ar_ptr->mutex);
2911 chunk_free(ar_ptr, p);
2912 (void)mutex_unlock(&ar_ptr->mutex);
2918 chunk_free(arena *ar_ptr, mchunkptr p)
2920 chunk_free(ar_ptr, p) arena *ar_ptr; mchunkptr p;
2923 INTERNAL_SIZE_T hd = p->size; /* its head field */
2924 INTERNAL_SIZE_T sz; /* its size */
2925 int idx; /* its bin index */
2926 mchunkptr next; /* next contiguous chunk */
2927 INTERNAL_SIZE_T nextsz; /* its size */
2928 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2929 mchunkptr bck; /* misc temp for linking */
2930 mchunkptr fwd; /* misc temp for linking */
2931 int islr; /* track whether merging with last_remainder */
2933 check_inuse_chunk(ar_ptr, p);
2935 sz = hd & ~PREV_INUSE;
2936 next = chunk_at_offset(p, sz);
2937 nextsz = chunksize(next);
2939 if (next == top(ar_ptr)) /* merge with top */
2943 if (!(hd & PREV_INUSE)) /* consolidate backward */
2945 prevsz = p->prev_size;
2946 p = chunk_at_offset(p, -prevsz);
2948 unlink(p, bck, fwd);
2951 set_head(p, sz | PREV_INUSE);
2955 if(ar_ptr == &main_arena) {
2957 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2961 heap_info *heap = heap_for_ptr(p);
2963 assert(heap->ar_ptr == ar_ptr);
2965 /* Try to get rid of completely empty heaps, if possible. */
2966 if((unsigned long)(sz) >= (unsigned long)trim_threshold ||
2967 p == chunk_at_offset(heap, sizeof(*heap)))
2968 heap_trim(heap, top_pad);
2976 if (!(hd & PREV_INUSE)) /* consolidate backward */
2978 prevsz = p->prev_size;
2979 p = chunk_at_offset(p, -prevsz);
2982 if (p->fd == last_remainder(ar_ptr)) /* keep as last_remainder */
2985 unlink(p, bck, fwd);
2988 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
2992 if (!islr && next->fd == last_remainder(ar_ptr))
2993 /* re-insert last_remainder */
2996 link_last_remainder(ar_ptr, p);
2999 unlink(next, bck, fwd);
3001 next = chunk_at_offset(p, sz);
3004 set_head(next, nextsz); /* clear inuse bit */
3006 set_head(p, sz | PREV_INUSE);
3007 next->prev_size = sz;
3009 frontlink(ar_ptr, p, sz, idx, bck, fwd);
3012 /* Check whether the heap containing top can go away now. */
3013 if(next->size < MINSIZE &&
3014 (unsigned long)sz > trim_threshold &&
3015 ar_ptr != &main_arena) { /* fencepost */
3016 heap_info* heap = heap_for_ptr(top(ar_ptr));
3018 if(top(ar_ptr) == chunk_at_offset(heap, sizeof(*heap)) &&
3019 heap->prev == heap_for_ptr(p))
3020 heap_trim(heap, top_pad);
3033 Chunks that were obtained via mmap cannot be extended or shrunk
3034 unless HAVE_MREMAP is defined, in which case mremap is used.
3035 Otherwise, if their reallocation is for additional space, they are
3036 copied. If for less, they are just left alone.
3038 Otherwise, if the reallocation is for additional space, and the
3039 chunk can be extended, it is, else a malloc-copy-free sequence is
3040 taken. There are several different ways that a chunk could be
3041 extended. All are tried:
3043 * Extending forward into following adjacent free chunk.
3044 * Shifting backwards, joining preceding adjacent space
3045 * Both shifting backwards and extending forward.
3046 * Extending into newly sbrked space
3048 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
3049 size argument of zero (re)allocates a minimum-sized chunk.
3051 If the reallocation is for less space, and the new request is for
3052 a `small' (<512 bytes) size, then the newly unused space is lopped
3055 The old unix realloc convention of allowing the last-free'd chunk
3056 to be used as an argument to realloc is no longer supported.
3057 I don't know of any programs still relying on this feature,
3058 and allowing it would also allow too many other incorrect
3059 usages of realloc to be sensible.
3066 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
3068 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
3072 INTERNAL_SIZE_T nb; /* padded request size */
3074 mchunkptr oldp; /* chunk corresponding to oldmem */
3075 INTERNAL_SIZE_T oldsize; /* its size */
3077 mchunkptr newp; /* chunk to return */
3079 #if defined _LIBC || defined MALLOC_HOOKS
3080 if (__realloc_hook != NULL) {
3083 #if defined __GNUC__ && __GNUC__ >= 2
3084 result = (*__realloc_hook)(oldmem, bytes, __builtin_return_address (0));
3086 result = (*__realloc_hook)(oldmem, bytes, NULL);
3092 #ifdef REALLOC_ZERO_BYTES_FREES
3093 if (bytes == 0) { fREe(oldmem); return 0; }
3096 /* realloc of null is supposed to be same as malloc */
3097 if (oldmem == 0) return mALLOc(bytes);
3099 oldp = mem2chunk(oldmem);
3100 oldsize = chunksize(oldp);
3102 nb = request2size(bytes);
3105 if (chunk_is_mmapped(oldp))
3110 newp = mremap_chunk(oldp, nb);
3111 if(newp) return chunk2mem(newp);
3113 /* Note the extra SIZE_SZ overhead. */
3114 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
3115 /* Must alloc, copy, free. */
3116 newmem = mALLOc(bytes);
3117 if (newmem == 0) return 0; /* propagate failure */
3118 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
3124 ar_ptr = arena_for_ptr(oldp);
3126 if(!mutex_trylock(&ar_ptr->mutex))
3127 ++(ar_ptr->stat_lock_direct);
3129 (void)mutex_lock(&ar_ptr->mutex);
3130 ++(ar_ptr->stat_lock_wait);
3133 (void)mutex_lock(&ar_ptr->mutex);
3137 /* As in malloc(), remember this arena for the next allocation. */
3138 tsd_setspecific(arena_key, (Void_t *)ar_ptr);
3141 newp = chunk_realloc(ar_ptr, oldp, oldsize, nb);
3143 (void)mutex_unlock(&ar_ptr->mutex);
3144 return newp ? chunk2mem(newp) : NULL;
3150 chunk_realloc(arena* ar_ptr, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
3153 chunk_realloc(ar_ptr, oldp, oldsize, nb)
3154 arena* ar_ptr; mchunkptr oldp; INTERNAL_SIZE_T oldsize, nb;
3157 mchunkptr newp = oldp; /* chunk to return */
3158 INTERNAL_SIZE_T newsize = oldsize; /* its size */
3160 mchunkptr next; /* next contiguous chunk after oldp */
3161 INTERNAL_SIZE_T nextsize; /* its size */
3163 mchunkptr prev; /* previous contiguous chunk before oldp */
3164 INTERNAL_SIZE_T prevsize; /* its size */
3166 mchunkptr remainder; /* holds split off extra space from newp */
3167 INTERNAL_SIZE_T remainder_size; /* its size */
3169 mchunkptr bck; /* misc temp for linking */
3170 mchunkptr fwd; /* misc temp for linking */
3172 check_inuse_chunk(ar_ptr, oldp);
3174 if ((long)(oldsize) < (long)(nb))
3177 /* Try expanding forward */
3179 next = chunk_at_offset(oldp, oldsize);
3180 if (next == top(ar_ptr) || !inuse(next))
3182 nextsize = chunksize(next);
3184 /* Forward into top only if a remainder */
3185 if (next == top(ar_ptr))
3187 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
3189 newsize += nextsize;
3190 top(ar_ptr) = chunk_at_offset(oldp, nb);
3191 set_head(top(ar_ptr), (newsize - nb) | PREV_INUSE);
3192 set_head_size(oldp, nb);
3197 /* Forward into next chunk */
3198 else if (((long)(nextsize + newsize) >= (long)(nb)))
3200 unlink(next, bck, fwd);
3201 newsize += nextsize;
3211 /* Try shifting backwards. */
3213 if (!prev_inuse(oldp))
3215 prev = prev_chunk(oldp);
3216 prevsize = chunksize(prev);
3218 /* try forward + backward first to save a later consolidation */
3223 if (next == top(ar_ptr))
3225 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
3227 unlink(prev, bck, fwd);
3229 newsize += prevsize + nextsize;
3230 MALLOC_COPY(chunk2mem(newp), chunk2mem(oldp), oldsize - SIZE_SZ);
3231 top(ar_ptr) = chunk_at_offset(newp, nb);
3232 set_head(top(ar_ptr), (newsize - nb) | PREV_INUSE);
3233 set_head_size(newp, nb);
3238 /* into next chunk */
3239 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
3241 unlink(next, bck, fwd);
3242 unlink(prev, bck, fwd);
3244 newsize += nextsize + prevsize;
3245 MALLOC_COPY(chunk2mem(newp), chunk2mem(oldp), oldsize - SIZE_SZ);
3251 if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
3253 unlink(prev, bck, fwd);
3255 newsize += prevsize;
3256 MALLOC_COPY(chunk2mem(newp), chunk2mem(oldp), oldsize - SIZE_SZ);
3263 newp = chunk_alloc (ar_ptr, nb);
3266 /* Maybe the failure is due to running out of mmapped areas. */
3267 if (ar_ptr != &main_arena) {
3268 (void)mutex_lock(&main_arena.mutex);
3269 newp = chunk_alloc(&main_arena, nb);
3270 (void)mutex_unlock(&main_arena.mutex);
3272 if (newp == 0) /* propagate failure */
3276 /* Avoid copy if newp is next chunk after oldp. */
3277 /* (This can only happen when new chunk is sbrk'ed.) */
3279 if ( newp == next_chunk(oldp))
3281 newsize += chunksize(newp);
3286 /* Otherwise copy, free, and exit */
3287 MALLOC_COPY(chunk2mem(newp), chunk2mem(oldp), oldsize - SIZE_SZ);
3288 chunk_free(ar_ptr, oldp);
3293 split: /* split off extra room in old or expanded chunk */
3295 if (newsize - nb >= MINSIZE) /* split off remainder */
3297 remainder = chunk_at_offset(newp, nb);
3298 remainder_size = newsize - nb;
3299 set_head_size(newp, nb);
3300 set_head(remainder, remainder_size | PREV_INUSE);
3301 set_inuse_bit_at_offset(remainder, remainder_size);
3302 chunk_free(ar_ptr, remainder);
3306 set_head_size(newp, newsize);
3307 set_inuse_bit_at_offset(newp, newsize);
3310 check_inuse_chunk(ar_ptr, newp);
3321 memalign requests more than enough space from malloc, finds a spot
3322 within that chunk that meets the alignment request, and then
3323 possibly frees the leading and trailing space.
3325 The alignment argument must be a power of two. This property is not
3326 checked by memalign, so misuse may result in random runtime errors.
3328 8-byte alignment is guaranteed by normal malloc calls, so don't
3329 bother calling memalign with an argument of 8 or less.
3331 Overreliance on memalign is a sure way to fragment space.
3337 Void_t* mEMALIGn(size_t alignment, size_t bytes)
3339 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
3343 INTERNAL_SIZE_T nb; /* padded request size */
3346 #if defined _LIBC || defined MALLOC_HOOKS
3347 if (__memalign_hook != NULL) {
3350 #if defined __GNUC__ && __GNUC__ >= 2
3351 result = (*__memalign_hook)(alignment, bytes,
3352 __builtin_return_address (0));
3354 result = (*__memalign_hook)(alignment, bytes, NULL);
3360 /* If need less alignment than we give anyway, just relay to malloc */
3362 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
3364 /* Otherwise, ensure that it is at least a minimum chunk size */
3366 if (alignment < MINSIZE) alignment = MINSIZE;
3368 nb = request2size(bytes);
3369 arena_get(ar_ptr, nb + alignment + MINSIZE);
3372 p = chunk_align(ar_ptr, nb, alignment);
3373 (void)mutex_unlock(&ar_ptr->mutex);
3375 /* Maybe the failure is due to running out of mmapped areas. */
3376 if(ar_ptr != &main_arena) {
3377 (void)mutex_lock(&main_arena.mutex);
3378 p = chunk_align(&main_arena, nb, alignment);
3379 (void)mutex_unlock(&main_arena.mutex);
3383 return chunk2mem(p);
3389 chunk_align(arena* ar_ptr, INTERNAL_SIZE_T nb, size_t alignment)
3391 chunk_align(ar_ptr, nb, alignment)
3392 arena* ar_ptr; INTERNAL_SIZE_T nb; size_t alignment;
3395 char* m; /* memory returned by malloc call */
3396 mchunkptr p; /* corresponding chunk */
3397 char* brk; /* alignment point within p */
3398 mchunkptr newp; /* chunk to return */
3399 INTERNAL_SIZE_T newsize; /* its size */
3400 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
3401 mchunkptr remainder; /* spare room at end to split off */
3402 long remainder_size; /* its size */
3404 /* Call chunk_alloc with worst case padding to hit alignment. */
3405 p = chunk_alloc(ar_ptr, nb + alignment + MINSIZE);
3407 return 0; /* propagate failure */
3411 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
3414 if(chunk_is_mmapped(p)) {
3415 return p; /* nothing more to do */
3419 else /* misaligned */
3422 Find an aligned spot inside chunk.
3423 Since we need to give back leading space in a chunk of at
3424 least MINSIZE, if the first calculation places us at
3425 a spot with less than MINSIZE leader, we can move to the
3426 next aligned spot -- we've allocated enough total room so that
3427 this is always possible.
3430 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -alignment);
3431 if ((long)(brk - (char*)(p)) < (long)MINSIZE) brk += alignment;
3433 newp = (mchunkptr)brk;
3434 leadsize = brk - (char*)(p);
3435 newsize = chunksize(p) - leadsize;
3438 if(chunk_is_mmapped(p))
3440 newp->prev_size = p->prev_size + leadsize;
3441 set_head(newp, newsize|IS_MMAPPED);
3446 /* give back leader, use the rest */
3448 set_head(newp, newsize | PREV_INUSE);
3449 set_inuse_bit_at_offset(newp, newsize);
3450 set_head_size(p, leadsize);
3451 chunk_free(ar_ptr, p);
3454 assert (newsize>=nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
3457 /* Also give back spare room at the end */
3459 remainder_size = chunksize(p) - nb;
3461 if (remainder_size >= (long)MINSIZE)
3463 remainder = chunk_at_offset(p, nb);
3464 set_head(remainder, remainder_size | PREV_INUSE);
3465 set_head_size(p, nb);
3466 chunk_free(ar_ptr, remainder);
3469 check_inuse_chunk(ar_ptr, p);
3477 valloc just invokes memalign with alignment argument equal
3478 to the page size of the system (or as near to this as can
3479 be figured out from all the includes/defines above.)
3483 Void_t* vALLOc(size_t bytes)
3485 Void_t* vALLOc(bytes) size_t bytes;
3488 return mEMALIGn (malloc_getpagesize, bytes);
3492 pvalloc just invokes valloc for the nearest pagesize
3493 that will accommodate request
3498 Void_t* pvALLOc(size_t bytes)
3500 Void_t* pvALLOc(bytes) size_t bytes;
3503 size_t pagesize = malloc_getpagesize;
3504 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
3509 calloc calls chunk_alloc, then zeroes out the allocated chunk.
3514 Void_t* cALLOc(size_t n, size_t elem_size)
3516 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
3520 mchunkptr p, oldtop;
3521 INTERNAL_SIZE_T sz, csz, oldtopsize;
3524 #if defined _LIBC || defined MALLOC_HOOKS
3525 if (__malloc_hook != NULL) {
3527 #if defined __GNUC__ && __GNUC__ >= 2
3528 mem = (*__malloc_hook)(sz, __builtin_return_address (0));
3530 mem = (*__malloc_hook)(sz, NULL);
3535 return memset(mem, 0, sz);
3537 while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
3543 sz = request2size(n * elem_size);
3544 arena_get(ar_ptr, sz);
3548 /* check if expand_top called, in which case don't need to clear */
3550 oldtop = top(ar_ptr);
3551 oldtopsize = chunksize(top(ar_ptr));
3553 p = chunk_alloc (ar_ptr, sz);
3555 /* Only clearing follows, so we can unlock early. */
3556 (void)mutex_unlock(&ar_ptr->mutex);
3559 /* Maybe the failure is due to running out of mmapped areas. */
3560 if(ar_ptr != &main_arena) {
3561 (void)mutex_lock(&main_arena.mutex);
3562 p = chunk_alloc(&main_arena, sz);
3563 (void)mutex_unlock(&main_arena.mutex);
3565 if (p == 0) return 0;
3569 /* Two optional cases in which clearing not necessary */
3572 if (chunk_is_mmapped(p)) return mem;
3578 if (p == oldtop && csz > oldtopsize) {
3579 /* clear only the bytes from non-freshly-sbrked memory */
3584 MALLOC_ZERO(mem, csz - SIZE_SZ);
3590 cfree just calls free. It is needed/defined on some systems
3591 that pair it with calloc, presumably for odd historical reasons.
3597 void cfree(Void_t *mem)
3599 void cfree(mem) Void_t *mem;
3610 Malloc_trim gives memory back to the system (via negative
3611 arguments to sbrk) if there is unused memory at the `high' end of
3612 the malloc pool. You can call this after freeing large blocks of
3613 memory to potentially reduce the system-level memory requirements
3614 of a program. However, it cannot guarantee to reduce memory. Under
3615 some allocation patterns, some large free blocks of memory will be
3616 locked between two used chunks, so they cannot be given back to
3619 The `pad' argument to malloc_trim represents the amount of free
3620 trailing space to leave untrimmed. If this argument is zero,
3621 only the minimum amount of memory to maintain internal data
3622 structures will be left (one page or less). Non-zero arguments
3623 can be supplied to maintain enough trailing space to service
3624 future expected allocations without having to re-obtain memory
3627 Malloc_trim returns 1 if it actually released any memory, else 0.
3632 int mALLOC_TRIm(size_t pad)
3634 int mALLOC_TRIm(pad) size_t pad;
3639 (void)mutex_lock(&main_arena.mutex);
3640 res = main_trim(pad);
3641 (void)mutex_unlock(&main_arena.mutex);
3645 /* Trim the main arena. */
3650 main_trim(size_t pad)
3652 main_trim(pad) size_t pad;
3655 mchunkptr top_chunk; /* The current top chunk */
3656 long top_size; /* Amount of top-most memory */
3657 long extra; /* Amount to release */
3658 char* current_brk; /* address returned by pre-check sbrk call */
3659 char* new_brk; /* address returned by negative sbrk call */
3661 unsigned long pagesz = malloc_getpagesize;
3663 top_chunk = top(&main_arena);
3664 top_size = chunksize(top_chunk);
3665 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3667 if (extra < (long)pagesz) /* Not enough memory to release */
3670 /* Test to make sure no one else called sbrk */
3671 current_brk = (char*)(MORECORE (0));
3672 if (current_brk != (char*)(top_chunk) + top_size)
3673 return 0; /* Apparently we don't own memory; must fail */
3675 new_brk = (char*)(MORECORE (-extra));
3677 #if defined _LIBC || defined MALLOC_HOOKS
3678 /* Call the `morecore' hook if necessary. */
3679 if (__after_morecore_hook)
3680 (*__after_morecore_hook) ();
3683 if (new_brk == (char*)(MORECORE_FAILURE)) { /* sbrk failed? */
3684 /* Try to figure out what we have */
3685 current_brk = (char*)(MORECORE (0));
3686 top_size = current_brk - (char*)top_chunk;
3687 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3689 sbrked_mem = current_brk - sbrk_base;
3690 set_head(top_chunk, top_size | PREV_INUSE);
3692 check_chunk(&main_arena, top_chunk);
3695 sbrked_mem -= extra;
3697 /* Success. Adjust top accordingly. */
3698 set_head(top_chunk, (top_size - extra) | PREV_INUSE);
3699 check_chunk(&main_arena, top_chunk);
3708 heap_trim(heap_info *heap, size_t pad)
3710 heap_trim(heap, pad) heap_info *heap; size_t pad;
3713 unsigned long pagesz = malloc_getpagesize;
3714 arena *ar_ptr = heap->ar_ptr;
3715 mchunkptr top_chunk = top(ar_ptr), p, bck, fwd;
3716 heap_info *prev_heap;
3717 long new_size, top_size, extra;
3719 /* Can this heap go away completely ? */
3720 while(top_chunk == chunk_at_offset(heap, sizeof(*heap))) {
3721 prev_heap = heap->prev;
3722 p = chunk_at_offset(prev_heap, prev_heap->size - (MINSIZE-2*SIZE_SZ));
3723 assert(p->size == (0|PREV_INUSE)); /* must be fencepost */
3725 new_size = chunksize(p) + (MINSIZE-2*SIZE_SZ);
3726 assert(new_size>0 && new_size<(long)(2*MINSIZE));
3728 new_size += p->prev_size;
3729 assert(new_size>0 && new_size<HEAP_MAX_SIZE);
3730 if(new_size + (HEAP_MAX_SIZE - prev_heap->size) < pad + MINSIZE + pagesz)
3732 ar_ptr->size -= heap->size;
3735 if(!prev_inuse(p)) { /* consolidate backward */
3737 unlink(p, bck, fwd);
3739 assert(((unsigned long)((char*)p + new_size) & (pagesz-1)) == 0);
3740 assert( ((char*)p + new_size) == ((char*)heap + heap->size) );
3741 top(ar_ptr) = top_chunk = p;
3742 set_head(top_chunk, new_size | PREV_INUSE);
3743 check_chunk(ar_ptr, top_chunk);
3745 top_size = chunksize(top_chunk);
3746 extra = ((top_size - pad - MINSIZE + (pagesz-1))/pagesz - 1) * pagesz;
3747 if(extra < (long)pagesz)
3749 /* Try to shrink. */
3750 if(grow_heap(heap, -extra) != 0)
3752 ar_ptr->size -= extra;
3754 /* Success. Adjust top accordingly. */
3755 set_head(top_chunk, (top_size - extra) | PREV_INUSE);
3756 check_chunk(ar_ptr, top_chunk);
3767 This routine tells you how many bytes you can actually use in an
3768 allocated chunk, which may be more than you requested (although
3769 often not). You can use this many bytes without worrying about
3770 overwriting other allocated objects. Not a particularly great
3771 programming practice, but still sometimes useful.
3776 size_t mALLOC_USABLE_SIZe(Void_t* mem)
3778 size_t mALLOC_USABLE_SIZe(mem) Void_t* mem;
3788 if(!chunk_is_mmapped(p))
3790 if (!inuse(p)) return 0;
3791 check_inuse_chunk(arena_for_ptr(mem), p);
3792 return chunksize(p) - SIZE_SZ;
3794 return chunksize(p) - 2*SIZE_SZ;
3801 /* Utility to update mallinfo for malloc_stats() and mallinfo() */
3805 malloc_update_mallinfo(arena *ar_ptr, struct mallinfo *mi)
3807 malloc_update_mallinfo(ar_ptr, mi) arena *ar_ptr; struct mallinfo *mi;
3816 INTERNAL_SIZE_T avail;
3818 (void)mutex_lock(&ar_ptr->mutex);
3819 avail = chunksize(top(ar_ptr));
3820 navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3822 for (i = 1; i < NAV; ++i)
3824 b = bin_at(ar_ptr, i);
3825 for (p = last(b); p != b; p = p->bk)
3828 check_free_chunk(ar_ptr, p);
3829 for (q = next_chunk(p);
3830 q != top(ar_ptr) && inuse(q) && (long)chunksize(q) > 0;
3832 check_inuse_chunk(ar_ptr, q);
3834 avail += chunksize(p);
3839 mi->arena = ar_ptr->size;
3840 mi->ordblks = navail;
3841 mi->smblks = mi->usmblks = mi->fsmblks = 0; /* clear unused fields */
3842 mi->uordblks = ar_ptr->size - avail;
3843 mi->fordblks = avail;
3844 mi->hblks = n_mmaps;
3845 mi->hblkhd = mmapped_mem;
3846 mi->keepcost = chunksize(top(ar_ptr));
3848 (void)mutex_unlock(&ar_ptr->mutex);
3851 #if !defined(NO_THREADS) && MALLOC_DEBUG > 1
3853 /* Print the complete contents of a single heap to stderr. */
3857 dump_heap(heap_info *heap)
3859 dump_heap(heap) heap_info *heap;
3865 fprintf(stderr, "Heap %p, size %10lx:\n", heap, (long)heap->size);
3866 ptr = (heap->ar_ptr != (arena*)(heap+1)) ?
3867 (char*)(heap + 1) : (char*)(heap + 1) + sizeof(arena);
3868 p = (mchunkptr)(((unsigned long)ptr + MALLOC_ALIGN_MASK) &
3869 ~MALLOC_ALIGN_MASK);
3871 fprintf(stderr, "chunk %p size %10lx", p, (long)p->size);
3872 if(p == top(heap->ar_ptr)) {
3873 fprintf(stderr, " (top)\n");
3875 } else if(p->size == (0|PREV_INUSE)) {
3876 fprintf(stderr, " (fence)\n");
3879 fprintf(stderr, "\n");
3892 For all arenas separately and in total, prints on stderr the
3893 amount of space obtained from the system, and the current number
3894 of bytes allocated via malloc (or realloc, etc) but not yet
3895 freed. (Note that this is the number of bytes allocated, not the
3896 number requested. It will be larger than the number requested
3897 because of alignment and bookkeeping overhead.) When not compiled
3898 for multiple threads, the maximum amount of allocated memory
3899 (which may be more than current if malloc_trim and/or munmap got
3900 called) is also reported. When using mmap(), prints the maximum
3901 number of simultaneous mmap regions used, too.
3910 unsigned int in_use_b = mmapped_mem, system_b = in_use_b;
3912 long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
3915 for(i=0, ar_ptr = &main_arena;; i++) {
3916 malloc_update_mallinfo(ar_ptr, &mi);
3917 fprintf(stderr, "Arena %d:\n", i);
3918 fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
3919 fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
3920 system_b += mi.arena;
3921 in_use_b += mi.uordblks;
3923 stat_lock_direct += ar_ptr->stat_lock_direct;
3924 stat_lock_loop += ar_ptr->stat_lock_loop;
3925 stat_lock_wait += ar_ptr->stat_lock_wait;
3927 #if !defined(NO_THREADS) && MALLOC_DEBUG > 1
3928 if(ar_ptr != &main_arena) {
3930 (void)mutex_lock(&ar_ptr->mutex);
3931 heap = heap_for_ptr(top(ar_ptr));
3932 while(heap) { dump_heap(heap); heap = heap->prev; }
3933 (void)mutex_unlock(&ar_ptr->mutex);
3936 ar_ptr = ar_ptr->next;
3937 if(ar_ptr == &main_arena) break;
3940 fprintf(stderr, "Total (incl. mmap):\n");
3942 fprintf(stderr, "Total:\n");
3944 fprintf(stderr, "system bytes = %10u\n", system_b);
3945 fprintf(stderr, "in use bytes = %10u\n", in_use_b);
3947 fprintf(stderr, "max system bytes = %10u\n", (unsigned int)max_total_mem);
3950 fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)max_n_mmaps);
3951 fprintf(stderr, "max mmap bytes = %10lu\n", max_mmapped_mem);
3954 fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
3955 fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
3956 fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
3957 fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
3958 fprintf(stderr, "locked total = %10ld\n",
3959 stat_lock_direct + stat_lock_loop + stat_lock_wait);
3964 mallinfo returns a copy of updated current mallinfo.
3965 The information reported is for the arena last used by the thread.
3968 struct mallinfo mALLINFo()
3971 Void_t *vptr = NULL;
3974 tsd_getspecific(arena_key, vptr);
3976 malloc_update_mallinfo((vptr ? (arena*)vptr : &main_arena), &mi);
3986 mallopt is the general SVID/XPG interface to tunable parameters.
3987 The format is to provide a (parameter-number, parameter-value) pair.
3988 mallopt then sets the corresponding parameter to the argument
3989 value if it can (i.e., so long as the value is meaningful),
3990 and returns 1 if successful else 0.
3992 See descriptions of tunable parameters above.
3997 int mALLOPt(int param_number, int value)
3999 int mALLOPt(param_number, value) int param_number; int value;
4002 switch(param_number)
4004 case M_TRIM_THRESHOLD:
4005 trim_threshold = value; return 1;
4007 top_pad = value; return 1;
4008 case M_MMAP_THRESHOLD:
4010 /* Forbid setting the threshold too high. */
4011 if((unsigned long)value > HEAP_MAX_SIZE/2) return 0;
4013 mmap_threshold = value; return 1;
4016 n_mmaps_max = value; return 1;
4018 if (value != 0) return 0; else n_mmaps_max = value; return 1;
4020 case M_CHECK_ACTION:
4021 check_action = value; return 1;
4030 /* Get/set state: malloc_get_state() records the current state of all
4031 malloc variables (_except_ for the actual heap contents and `hook'
4032 function pointers) in a system dependent, opaque data structure.
4033 This data structure is dynamically allocated and can be free()d
4034 after use. malloc_set_state() restores the state of all malloc
4035 variables to the previously obtained state. This is especially
4036 useful when using this malloc as part of a shared library, and when
4037 the heap contents are saved/restored via some other method. The
4038 primary example for this is GNU Emacs with its `dumping' procedure.
4039 `Hook' function pointers are never saved or restored by these
4042 #define MALLOC_STATE_MAGIC 0x444c4541l
4043 #define MALLOC_STATE_VERSION (0*0x100l + 0l) /* major*0x100 + minor */
4045 struct malloc_state {
4048 mbinptr av[NAV * 2 + 2];
4050 int sbrked_mem_bytes;
4051 unsigned long trim_threshold;
4052 unsigned long top_pad;
4053 unsigned int n_mmaps_max;
4054 unsigned long mmap_threshold;
4056 unsigned long max_sbrked_mem;
4057 unsigned long max_total_mem;
4058 unsigned int n_mmaps;
4059 unsigned int max_n_mmaps;
4060 unsigned long mmapped_mem;
4061 unsigned long max_mmapped_mem;
4068 struct malloc_state* ms;
4073 (void)mutex_lock(&main_arena.mutex);
4074 victim = chunk_alloc(&main_arena, request2size(sizeof(*ms)));
4076 (void)mutex_unlock(&main_arena.mutex);
4079 ms = (struct malloc_state*)chunk2mem(victim);
4080 ms->magic = MALLOC_STATE_MAGIC;
4081 ms->version = MALLOC_STATE_VERSION;
4082 ms->av[0] = main_arena.av[0];
4083 ms->av[1] = main_arena.av[1];
4084 for(i=0; i<NAV; i++) {
4085 b = bin_at(&main_arena, i);
4087 ms->av[2*i+2] = ms->av[2*i+3] = 0; /* empty bin (or initial top) */
4089 ms->av[2*i+2] = first(b);
4090 ms->av[2*i+3] = last(b);
4093 ms->sbrk_base = sbrk_base;
4094 ms->sbrked_mem_bytes = sbrked_mem;
4095 ms->trim_threshold = trim_threshold;
4096 ms->top_pad = top_pad;
4097 ms->n_mmaps_max = n_mmaps_max;
4098 ms->mmap_threshold = mmap_threshold;
4099 ms->check_action = check_action;
4100 ms->max_sbrked_mem = max_sbrked_mem;
4102 ms->max_total_mem = max_total_mem;
4104 ms->max_total_mem = 0;
4106 ms->n_mmaps = n_mmaps;
4107 ms->max_n_mmaps = max_n_mmaps;
4108 ms->mmapped_mem = mmapped_mem;
4109 ms->max_mmapped_mem = max_mmapped_mem;
4110 (void)mutex_unlock(&main_arena.mutex);
4116 mALLOC_SET_STATe(Void_t* msptr)
4118 mALLOC_SET_STATe(msptr) Void_t* msptr;
4121 struct malloc_state* ms = (struct malloc_state*)msptr;
4126 if(ms->magic != MALLOC_STATE_MAGIC) return -1;
4127 /* Must fail if the major version is too high. */
4128 if((ms->version & ~0xffl) > (MALLOC_STATE_VERSION & ~0xffl)) return -2;
4129 (void)mutex_lock(&main_arena.mutex);
4130 main_arena.av[0] = ms->av[0];
4131 main_arena.av[1] = ms->av[1];
4132 for(i=0; i<NAV; i++) {
4133 b = bin_at(&main_arena, i);
4134 if(ms->av[2*i+2] == 0)
4135 first(b) = last(b) = b;
4137 first(b) = ms->av[2*i+2];
4138 last(b) = ms->av[2*i+3];
4140 /* Make sure the links to the `av'-bins in the heap are correct. */
4146 sbrk_base = ms->sbrk_base;
4147 sbrked_mem = ms->sbrked_mem_bytes;
4148 trim_threshold = ms->trim_threshold;
4149 top_pad = ms->top_pad;
4150 n_mmaps_max = ms->n_mmaps_max;
4151 mmap_threshold = ms->mmap_threshold;
4152 check_action = ms->check_action;
4153 max_sbrked_mem = ms->max_sbrked_mem;
4155 max_total_mem = ms->max_total_mem;
4157 n_mmaps = ms->n_mmaps;
4158 max_n_mmaps = ms->max_n_mmaps;
4159 mmapped_mem = ms->mmapped_mem;
4160 max_mmapped_mem = ms->max_mmapped_mem;
4161 /* add version-dependent code here */
4162 (void)mutex_unlock(&main_arena.mutex);
4168 #if defined _LIBC || defined MALLOC_HOOKS
4170 /* A simple, standard set of debugging hooks. Overhead is `only' one
4171 byte per chunk; still this will catch most cases of double frees or
4172 overruns. The goal here is to avoid obscure crashes due to invalid
4173 usage, unlike in the MALLOC_DEBUG code. */
4175 #define MAGICBYTE(p) ( ( ((size_t)p >> 3) ^ ((size_t)p >> 11)) & 0xFF )
4177 /* Instrument a chunk with overrun detector byte(s) and convert it
4178 into a user pointer with requested size sz. */
4182 chunk2mem_check(mchunkptr p, size_t sz)
4184 chunk2mem_check(p, sz) mchunkptr p; size_t sz;
4187 unsigned char* m_ptr = (unsigned char*)chunk2mem(p);
4190 for(i = chunksize(p) - (chunk_is_mmapped(p) ? 2*SIZE_SZ+1 : SIZE_SZ+1);
4194 m_ptr[i] = (unsigned char)(i-sz);
4199 m_ptr[sz] = MAGICBYTE(p);
4200 return (Void_t*)m_ptr;
4203 /* Convert a pointer to be free()d or realloc()ed to a valid chunk
4204 pointer. If the provided pointer is not valid, return NULL. */
4209 mem2chunk_check(Void_t* mem)
4211 mem2chunk_check(mem) Void_t* mem;
4215 INTERNAL_SIZE_T sz, c;
4216 unsigned char magic;
4219 if(!aligned_OK(p)) return NULL;
4220 if( (char*)p>=sbrk_base && (char*)p<(sbrk_base+sbrked_mem) ) {
4221 /* Must be a chunk in conventional heap memory. */
4222 if(chunk_is_mmapped(p) ||
4223 ( (sz = chunksize(p)), ((char*)p + sz)>=(sbrk_base+sbrked_mem) ) ||
4224 sz<MINSIZE || sz&MALLOC_ALIGN_MASK || !inuse(p) ||
4225 ( !prev_inuse(p) && (p->prev_size&MALLOC_ALIGN_MASK ||
4226 (long)prev_chunk(p)<(long)sbrk_base ||
4227 next_chunk(prev_chunk(p))!=p) ))
4229 magic = MAGICBYTE(p);
4230 for(sz += SIZE_SZ-1; (c = ((unsigned char*)p)[sz]) != magic; sz -= c) {
4231 if(c<=0 || sz<(c+2*SIZE_SZ)) return NULL;
4233 ((unsigned char*)p)[sz] ^= 0xFF;
4235 unsigned long offset, page_mask = malloc_getpagesize-1;
4237 /* mmap()ed chunks have MALLOC_ALIGNMENT or higher power-of-two
4238 alignment relative to the beginning of a page. Check this
4240 offset = (unsigned long)mem & page_mask;
4241 if((offset!=MALLOC_ALIGNMENT && offset!=0 && offset!=0x10 &&
4242 offset!=0x20 && offset!=0x40 && offset!=0x80 && offset!=0x100 &&
4243 offset!=0x200 && offset!=0x400 && offset!=0x800 && offset!=0x1000 &&
4245 !chunk_is_mmapped(p) || (p->size & PREV_INUSE) ||
4246 ( (((unsigned long)p - p->prev_size) & page_mask) != 0 ) ||
4247 ( (sz = chunksize(p)), ((p->prev_size + sz) & page_mask) != 0 ) )
4249 magic = MAGICBYTE(p);
4250 for(sz -= 1; (c = ((unsigned char*)p)[sz]) != magic; sz -= c) {
4251 if(c<=0 || sz<(c+2*SIZE_SZ)) return NULL;
4253 ((unsigned char*)p)[sz] ^= 0xFF;
4258 /* Check for corruption of the top chunk, and try to recover if
4268 mchunkptr t = top(&main_arena);
4269 char* brk, * new_brk;
4270 INTERNAL_SIZE_T front_misalign, sbrk_size;
4271 unsigned long pagesz = malloc_getpagesize;
4273 if((char*)t + chunksize(t) == sbrk_base + sbrked_mem ||
4274 t == initial_top(&main_arena)) return 0;
4276 switch(check_action) {
4278 fprintf(stderr, "malloc: top chunk is corrupt\n");
4283 /* Try to set up a new top chunk. */
4285 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
4286 if (front_misalign > 0)
4287 front_misalign = MALLOC_ALIGNMENT - front_misalign;
4288 sbrk_size = front_misalign + top_pad + MINSIZE;
4289 sbrk_size += pagesz - ((unsigned long)(brk + sbrk_size) & (pagesz - 1));
4290 new_brk = (char*)(MORECORE (sbrk_size));
4291 if (new_brk == (char*)(MORECORE_FAILURE)) return -1;
4292 sbrked_mem = (new_brk - sbrk_base) + sbrk_size;
4294 top(&main_arena) = (mchunkptr)(brk + front_misalign);
4295 set_head(top(&main_arena), (sbrk_size - front_misalign) | PREV_INUSE);
4302 malloc_check(size_t sz, const Void_t *caller)
4304 malloc_check(sz, caller) size_t sz; const Void_t *caller;
4308 INTERNAL_SIZE_T nb = request2size(sz + 1);
4310 (void)mutex_lock(&main_arena.mutex);
4311 victim = (top_check() >= 0) ? chunk_alloc(&main_arena, nb) : NULL;
4312 (void)mutex_unlock(&main_arena.mutex);
4313 if(!victim) return NULL;
4314 return chunk2mem_check(victim, sz);
4319 free_check(Void_t* mem, const Void_t *caller)
4321 free_check(mem, caller) Void_t* mem; const Void_t *caller;
4327 (void)mutex_lock(&main_arena.mutex);
4328 p = mem2chunk_check(mem);
4330 (void)mutex_unlock(&main_arena.mutex);
4331 switch(check_action) {