1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
6 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
8 This file is part of the GNU C Library. Its master source is NOT part of
9 the C library, however. The master source lives in /gd/gnu/lib.
11 The GNU C Library is free software; you can redistribute it and/or
12 modify it under the terms of the GNU Library General Public License as
13 published by the Free Software Foundation; either version 2 of the
14 License, or (at your option) any later version.
16 The GNU C Library is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 Library General Public License for more details.
21 You should have received a copy of the GNU Library General Public
22 License along with the GNU C Library; see the file COPYING.LIB. If not,
23 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
26 /* AIX requires this to be the first thing in the file. */
27 #if defined (_AIX) && !defined (REGEX_MALLOC)
38 #if defined(STDC_HEADERS) && !defined(emacs)
41 /* We need this for `regex.h', and perhaps for the Emacs include files. */
42 #include <sys/types.h>
45 /* For platform which support the ISO C amendement 1 functionality we
46 support user defined character classes. */
47 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
52 /* This is for other GNU distributions with internationalized messages. */
53 #if HAVE_LIBINTL_H || defined (_LIBC)
56 # define gettext(msgid) (msgid)
60 /* This define is so xgettext can find the internationalizable
62 #define gettext_noop(String) String
65 /* The `emacs' switch turns on certain matching commands
66 that make sense only in Emacs. */
75 /* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
80 #if defined (STDC_HEADERS) || defined (_LIBC)
87 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
88 If nothing else has been done, use the method below. */
89 #ifdef INHIBIT_STRING_HEADER
90 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91 #if !defined (bzero) && !defined (bcopy)
92 #undef INHIBIT_STRING_HEADER
97 /* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
100 #ifndef INHIBIT_STRING_HEADER
101 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
104 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
107 #define bcopy(s, d, n) memcpy ((d), (s), (n))
110 #define bzero(s, n) memset ((s), 0, (n))
117 /* Define the syntax stuff for \<, \>, etc. */
119 /* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
125 #ifdef SWITCH_ENUM_BUG
126 #define SWITCH_ENUM_CAST(x) ((int)(x))
128 #define SWITCH_ENUM_CAST(x) (x)
133 extern char *re_syntax_table;
135 #else /* not SYNTAX_TABLE */
137 /* How many characters in the character set. */
138 #define CHAR_SET_SIZE 256
140 static char re_syntax_table[CHAR_SET_SIZE];
151 bzero (re_syntax_table, sizeof re_syntax_table);
153 for (c = 'a'; c <= 'z'; c++)
154 re_syntax_table[c] = Sword;
156 for (c = 'A'; c <= 'Z'; c++)
157 re_syntax_table[c] = Sword;
159 for (c = '0'; c <= '9'; c++)
160 re_syntax_table[c] = Sword;
162 re_syntax_table['_'] = Sword;
167 #endif /* not SYNTAX_TABLE */
169 #define SYNTAX(c) re_syntax_table[c]
171 #endif /* not emacs */
173 /* Get the interface, including the syntax bits. */
176 /* isalpha etc. are used for the character classes. */
179 /* Jim Meyering writes:
181 "... Some ctype macros are valid only for character codes that
182 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
183 using /bin/cc or gcc but without giving an ansi option). So, all
184 ctype uses should be through macros like ISPRINT... If
185 STDC_HEADERS is defined, then autoconf has verified that the ctype
186 macros don't need to be guarded with references to isascii. ...
187 Defining isascii to 1 should let any compiler worth its salt
188 eliminate the && through constant folding." */
190 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
193 #define ISASCII(c) isascii(c)
197 #define ISBLANK(c) (ISASCII (c) && isblank (c))
199 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
202 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
204 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
207 #define ISPRINT(c) (ISASCII (c) && isprint (c))
208 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
209 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
210 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
211 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
212 #define ISLOWER(c) (ISASCII (c) && islower (c))
213 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
214 #define ISSPACE(c) (ISASCII (c) && isspace (c))
215 #define ISUPPER(c) (ISASCII (c) && isupper (c))
216 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
219 #define NULL (void *)0
222 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
223 since ours (we hope) works properly with all combinations of
224 machines, compilers, `char' and `unsigned char' argument types.
225 (Per Bothner suggested the basic approach.) */
226 #undef SIGN_EXTEND_CHAR
228 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
229 #else /* not __STDC__ */
230 /* As in Harbison and Steele. */
231 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
234 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
235 use `alloca' instead of `malloc'. This is because using malloc in
236 re_search* or re_match* could cause memory leaks when C-g is used in
237 Emacs; also, malloc is slower and causes storage fragmentation. On
238 the other hand, malloc is more portable, and easier to debug.
240 Because we sometimes use alloca, some routines have to be macros,
241 not functions -- `alloca'-allocated space disappears at the end of the
242 function it is called in. */
246 #define REGEX_ALLOCATE malloc
247 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
248 #define REGEX_FREE free
250 #else /* not REGEX_MALLOC */
252 /* Emacs already defines alloca, sometimes. */
255 /* Make alloca work the best possible way. */
257 #define alloca __builtin_alloca
258 #else /* not __GNUC__ */
261 #else /* not __GNUC__ or HAVE_ALLOCA_H */
262 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
263 #ifndef _AIX /* Already did AIX, up at the top. */
265 #endif /* not _AIX */
267 #endif /* not HAVE_ALLOCA_H */
268 #endif /* not __GNUC__ */
270 #endif /* not alloca */
272 #define REGEX_ALLOCATE alloca
274 /* Assumes a `char *destination' variable. */
275 #define REGEX_REALLOCATE(source, osize, nsize) \
276 (destination = (char *) alloca (nsize), \
277 bcopy (source, destination, osize), \
280 /* No need to do anything to free, after alloca. */
281 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
283 #endif /* not REGEX_MALLOC */
285 /* Define how to allocate the failure stack. */
287 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
289 #define REGEX_ALLOCATE_STACK(size) \
290 r_alloc (&failure_stack_ptr, (size))
291 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
292 r_re_alloc (&failure_stack_ptr, (nsize))
293 #define REGEX_FREE_STACK(ptr) \
294 r_alloc_free (&failure_stack_ptr)
296 #else /* not using relocating allocator */
300 #define REGEX_ALLOCATE_STACK malloc
301 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
302 #define REGEX_FREE_STACK free
304 #else /* not REGEX_MALLOC */
306 #define REGEX_ALLOCATE_STACK alloca
308 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
309 REGEX_REALLOCATE (source, osize, nsize)
310 /* No need to explicitly free anything. */
311 #define REGEX_FREE_STACK(arg)
313 #endif /* not REGEX_MALLOC */
314 #endif /* not using relocating allocator */
317 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
318 `string1' or just past its end. This works if PTR is NULL, which is
320 #define FIRST_STRING_P(ptr) \
321 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
323 /* (Re)Allocate N items of type T using malloc, or fail. */
324 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
325 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
326 #define RETALLOC_IF(addr, n, t) \
327 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
328 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
330 #define BYTEWIDTH 8 /* In bits. */
332 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
336 #define MAX(a, b) ((a) > (b) ? (a) : (b))
337 #define MIN(a, b) ((a) < (b) ? (a) : (b))
339 typedef char boolean;
343 static int re_match_2_internal ();
345 /* These are the command codes that appear in compiled regular
346 expressions. Some opcodes are followed by argument bytes. A
347 command code can specify any interpretation whatsoever for its
348 arguments. Zero bytes may appear in the compiled regular expression. */
354 /* Succeed right away--no more backtracking. */
357 /* Followed by one byte giving n, then by n literal bytes. */
360 /* Matches any (more or less) character. */
363 /* Matches any one char belonging to specified set. First
364 following byte is number of bitmap bytes. Then come bytes
365 for a bitmap saying which chars are in. Bits in each byte
366 are ordered low-bit-first. A character is in the set if its
367 bit is 1. A character too large to have a bit in the map is
368 automatically not in the set. */
371 /* Same parameters as charset, but match any character that is
372 not one of those specified. */
375 /* Start remembering the text that is matched, for storing in a
376 register. Followed by one byte with the register number, in
377 the range 0 to one less than the pattern buffer's re_nsub
378 field. Then followed by one byte with the number of groups
379 inner to this one. (This last has to be part of the
380 start_memory only because we need it in the on_failure_jump
384 /* Stop remembering the text that is matched and store it in a
385 memory register. Followed by one byte with the register
386 number, in the range 0 to one less than `re_nsub' in the
387 pattern buffer, and one byte with the number of inner groups,
388 just like `start_memory'. (We need the number of inner
389 groups here because we don't have any easy way of finding the
390 corresponding start_memory when we're at a stop_memory.) */
393 /* Match a duplicate of something remembered. Followed by one
394 byte containing the register number. */
397 /* Fail unless at beginning of line. */
400 /* Fail unless at end of line. */
403 /* Succeeds if at beginning of buffer (if emacs) or at beginning
404 of string to be matched (if not). */
407 /* Analogously, for end of buffer/string. */
410 /* Followed by two byte relative address to which to jump. */
413 /* Same as jump, but marks the end of an alternative. */
416 /* Followed by two-byte relative address of place to resume at
417 in case of failure. */
420 /* Like on_failure_jump, but pushes a placeholder instead of the
421 current string position when executed. */
422 on_failure_keep_string_jump,
424 /* Throw away latest failure point and then jump to following
425 two-byte relative address. */
428 /* Change to pop_failure_jump if know won't have to backtrack to
429 match; otherwise change to jump. This is used to jump
430 back to the beginning of a repeat. If what follows this jump
431 clearly won't match what the repeat does, such that we can be
432 sure that there is no use backtracking out of repetitions
433 already matched, then we change it to a pop_failure_jump.
434 Followed by two-byte address. */
437 /* Jump to following two-byte address, and push a dummy failure
438 point. This failure point will be thrown away if an attempt
439 is made to use it for a failure. A `+' construct makes this
440 before the first repeat. Also used as an intermediary kind
441 of jump when compiling an alternative. */
444 /* Push a dummy failure point and continue. Used at the end of
448 /* Followed by two-byte relative address and two-byte number n.
449 After matching N times, jump to the address upon failure. */
452 /* Followed by two-byte relative address, and two-byte number n.
453 Jump to the address N times, then fail. */
456 /* Set the following two-byte relative address to the
457 subsequent two-byte number. The address *includes* the two
461 wordchar, /* Matches any word-constituent character. */
462 notwordchar, /* Matches any char that is not a word-constituent. */
464 wordbeg, /* Succeeds if at word beginning. */
465 wordend, /* Succeeds if at word end. */
467 wordbound, /* Succeeds if at a word boundary. */
468 notwordbound /* Succeeds if not at a word boundary. */
471 ,before_dot, /* Succeeds if before point. */
472 at_dot, /* Succeeds if at point. */
473 after_dot, /* Succeeds if after point. */
475 /* Matches any character whose syntax is specified. Followed by
476 a byte which contains a syntax code, e.g., Sword. */
479 /* Matches any character whose syntax is not that specified. */
484 /* Common operations on the compiled pattern. */
486 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
488 #define STORE_NUMBER(destination, number) \
490 (destination)[0] = (number) & 0377; \
491 (destination)[1] = (number) >> 8; \
494 /* Same as STORE_NUMBER, except increment DESTINATION to
495 the byte after where the number is stored. Therefore, DESTINATION
496 must be an lvalue. */
498 #define STORE_NUMBER_AND_INCR(destination, number) \
500 STORE_NUMBER (destination, number); \
501 (destination) += 2; \
504 /* Put into DESTINATION a number stored in two contiguous bytes starting
507 #define EXTRACT_NUMBER(destination, source) \
509 (destination) = *(source) & 0377; \
510 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
514 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
516 extract_number (dest, source)
518 unsigned char *source;
520 int temp = SIGN_EXTEND_CHAR (*(source + 1));
521 *dest = *source & 0377;
525 #ifndef EXTRACT_MACROS /* To debug the macros. */
526 #undef EXTRACT_NUMBER
527 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
528 #endif /* not EXTRACT_MACROS */
532 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
533 SOURCE must be an lvalue. */
535 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
537 EXTRACT_NUMBER (destination, source); \
542 static void extract_number_and_incr _RE_ARGS ((int *destination,
543 unsigned char **source));
545 extract_number_and_incr (destination, source)
547 unsigned char **source;
549 extract_number (destination, *source);
553 #ifndef EXTRACT_MACROS
554 #undef EXTRACT_NUMBER_AND_INCR
555 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
556 extract_number_and_incr (&dest, &src)
557 #endif /* not EXTRACT_MACROS */
561 /* If DEBUG is defined, Regex prints many voluminous messages about what
562 it is doing (if the variable `debug' is nonzero). If linked with the
563 main program in `iregex.c', you can enter patterns and strings
564 interactively. And if linked with the main program in `main.c' and
565 the other test files, you can run the already-written tests. */
569 /* We use standard I/O for debugging. */
572 /* It is useful to test things that ``must'' be true when debugging. */
575 static int debug = 0;
577 #define DEBUG_STATEMENT(e) e
578 #define DEBUG_PRINT1(x) if (debug) printf (x)
579 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
580 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
581 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
582 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
583 if (debug) print_partial_compiled_pattern (s, e)
584 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
585 if (debug) print_double_string (w, s1, sz1, s2, sz2)
588 /* Print the fastmap in human-readable form. */
591 print_fastmap (fastmap)
594 unsigned was_a_range = 0;
597 while (i < (1 << BYTEWIDTH))
603 while (i < (1 << BYTEWIDTH) && fastmap[i])
619 /* Print a compiled pattern string in human-readable form, starting at
620 the START pointer into it and ending just before the pointer END. */
623 print_partial_compiled_pattern (start, end)
624 unsigned char *start;
629 unsigned char *p = start;
630 unsigned char *pend = end;
638 /* Loop over pattern commands. */
641 printf ("%d:\t", p - start);
643 switch ((re_opcode_t) *p++)
651 printf ("/exactn/%d", mcnt);
662 printf ("/start_memory/%d/%d", mcnt, *p++);
667 printf ("/stop_memory/%d/%d", mcnt, *p++);
671 printf ("/duplicate/%d", *p++);
681 register int c, last = -100;
682 register int in_range = 0;
684 printf ("/charset [%s",
685 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
687 assert (p + *p < pend);
689 for (c = 0; c < 256; c++)
691 && (p[1 + (c/8)] & (1 << (c % 8))))
693 /* Are we starting a range? */
694 if (last + 1 == c && ! in_range)
699 /* Have we broken a range? */
700 else if (last + 1 != c && in_range)
729 case on_failure_jump:
730 extract_number_and_incr (&mcnt, &p);
731 printf ("/on_failure_jump to %d", p + mcnt - start);
734 case on_failure_keep_string_jump:
735 extract_number_and_incr (&mcnt, &p);
736 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
739 case dummy_failure_jump:
740 extract_number_and_incr (&mcnt, &p);
741 printf ("/dummy_failure_jump to %d", p + mcnt - start);
744 case push_dummy_failure:
745 printf ("/push_dummy_failure");
749 extract_number_and_incr (&mcnt, &p);
750 printf ("/maybe_pop_jump to %d", p + mcnt - start);
753 case pop_failure_jump:
754 extract_number_and_incr (&mcnt, &p);
755 printf ("/pop_failure_jump to %d", p + mcnt - start);
759 extract_number_and_incr (&mcnt, &p);
760 printf ("/jump_past_alt to %d", p + mcnt - start);
764 extract_number_and_incr (&mcnt, &p);
765 printf ("/jump to %d", p + mcnt - start);
769 extract_number_and_incr (&mcnt, &p);
771 extract_number_and_incr (&mcnt2, &p);
772 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
776 extract_number_and_incr (&mcnt, &p);
778 extract_number_and_incr (&mcnt2, &p);
779 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
783 extract_number_and_incr (&mcnt, &p);
785 extract_number_and_incr (&mcnt2, &p);
786 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
790 printf ("/wordbound");
794 printf ("/notwordbound");
806 printf ("/before_dot");
814 printf ("/after_dot");
818 printf ("/syntaxspec");
820 printf ("/%d", mcnt);
824 printf ("/notsyntaxspec");
826 printf ("/%d", mcnt);
831 printf ("/wordchar");
835 printf ("/notwordchar");
847 printf ("?%d", *(p-1));
853 printf ("%d:\tend of pattern.\n", p - start);
858 print_compiled_pattern (bufp)
859 struct re_pattern_buffer *bufp;
861 unsigned char *buffer = bufp->buffer;
863 print_partial_compiled_pattern (buffer, buffer + bufp->used);
864 printf ("%ld bytes used/%ld bytes allocated.\n",
865 bufp->used, bufp->allocated);
867 if (bufp->fastmap_accurate && bufp->fastmap)
869 printf ("fastmap: ");
870 print_fastmap (bufp->fastmap);
873 printf ("re_nsub: %d\t", bufp->re_nsub);
874 printf ("regs_alloc: %d\t", bufp->regs_allocated);
875 printf ("can_be_null: %d\t", bufp->can_be_null);
876 printf ("newline_anchor: %d\n", bufp->newline_anchor);
877 printf ("no_sub: %d\t", bufp->no_sub);
878 printf ("not_bol: %d\t", bufp->not_bol);
879 printf ("not_eol: %d\t", bufp->not_eol);
880 printf ("syntax: %lx\n", bufp->syntax);
881 /* Perhaps we should print the translate table? */
886 print_double_string (where, string1, size1, string2, size2)
899 if (FIRST_STRING_P (where))
901 for (this_char = where - string1; this_char < size1; this_char++)
902 putchar (string1[this_char]);
907 for (this_char = where - string2; this_char < size2; this_char++)
908 putchar (string2[this_char]);
919 #else /* not DEBUG */
924 #define DEBUG_STATEMENT(e)
925 #define DEBUG_PRINT1(x)
926 #define DEBUG_PRINT2(x1, x2)
927 #define DEBUG_PRINT3(x1, x2, x3)
928 #define DEBUG_PRINT4(x1, x2, x3, x4)
929 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
930 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
932 #endif /* not DEBUG */
934 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
935 also be assigned to arbitrarily: each pattern buffer stores its own
936 syntax, so it can be changed between regex compilations. */
937 /* This has no initializer because initialized variables in Emacs
938 become read-only after dumping. */
939 reg_syntax_t re_syntax_options;
942 /* Specify the precise syntax of regexps for compilation. This provides
943 for compatibility for various utilities which historically have
944 different, incompatible syntaxes.
946 The argument SYNTAX is a bit mask comprised of the various bits
947 defined in regex.h. We return the old syntax. */
950 re_set_syntax (syntax)
953 reg_syntax_t ret = re_syntax_options;
955 re_syntax_options = syntax;
957 if (syntax & RE_DEBUG)
959 else if (debug) /* was on but now is not */
965 /* This table gives an error message for each of the error codes listed
966 in regex.h. Obviously the order here has to be same as there.
967 POSIX doesn't require that we do anything for REG_NOERROR,
968 but why not be nice? */
970 static const char *re_error_msgid[] =
972 gettext_noop ("Success"), /* REG_NOERROR */
973 gettext_noop ("No match"), /* REG_NOMATCH */
974 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
975 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
976 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
977 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
978 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
979 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
980 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
981 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
982 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
983 gettext_noop ("Invalid range end"), /* REG_ERANGE */
984 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
985 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
986 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
987 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
988 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
991 /* Avoiding alloca during matching, to placate r_alloc. */
993 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
994 searching and matching functions should not call alloca. On some
995 systems, alloca is implemented in terms of malloc, and if we're
996 using the relocating allocator routines, then malloc could cause a
997 relocation, which might (if the strings being searched are in the
998 ralloc heap) shift the data out from underneath the regexp
1001 Here's another reason to avoid allocation: Emacs
1002 processes input from X in a signal handler; processing X input may
1003 call malloc; if input arrives while a matching routine is calling
1004 malloc, then we're scrod. But Emacs can't just block input while
1005 calling matching routines; then we don't notice interrupts when
1006 they come in. So, Emacs blocks input around all regexp calls
1007 except the matching calls, which it leaves unprotected, in the
1008 faith that they will not malloc. */
1010 /* Normally, this is fine. */
1011 #define MATCH_MAY_ALLOCATE
1013 /* When using GNU C, we are not REALLY using the C alloca, no matter
1014 what config.h may say. So don't take precautions for it. */
1019 /* The match routines may not allocate if (1) they would do it with malloc
1020 and (2) it's not safe for them to use malloc.
1021 Note that if REL_ALLOC is defined, matching would not use malloc for the
1022 failure stack, but we would still use it for the register vectors;
1023 so REL_ALLOC should not affect this. */
1024 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1025 #undef MATCH_MAY_ALLOCATE
1029 /* Failure stack declarations and macros; both re_compile_fastmap and
1030 re_match_2 use a failure stack. These have to be macros because of
1031 REGEX_ALLOCATE_STACK. */
1034 /* Number of failure points for which to initially allocate space
1035 when matching. If this number is exceeded, we allocate more
1036 space, so it is not a hard limit. */
1037 #ifndef INIT_FAILURE_ALLOC
1038 #define INIT_FAILURE_ALLOC 5
1041 /* Roughly the maximum number of failure points on the stack. Would be
1042 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1043 This is a variable only so users of regex can assign to it; we never
1044 change it ourselves. */
1048 #if defined (MATCH_MAY_ALLOCATE)
1049 /* 4400 was enough to cause a crash on Alpha OSF/1,
1050 whose default stack limit is 2mb. */
1051 long int re_max_failures = 4000;
1053 long int re_max_failures = 2000;
1056 union fail_stack_elt
1058 unsigned char *pointer;
1062 typedef union fail_stack_elt fail_stack_elt_t;
1066 fail_stack_elt_t *stack;
1067 unsigned long int size;
1068 unsigned long int avail; /* Offset of next open position. */
1071 #else /* not INT_IS_16BIT */
1073 #if defined (MATCH_MAY_ALLOCATE)
1074 /* 4400 was enough to cause a crash on Alpha OSF/1,
1075 whose default stack limit is 2mb. */
1076 int re_max_failures = 20000;
1078 int re_max_failures = 2000;
1081 union fail_stack_elt
1083 unsigned char *pointer;
1087 typedef union fail_stack_elt fail_stack_elt_t;
1091 fail_stack_elt_t *stack;
1093 unsigned avail; /* Offset of next open position. */
1096 #endif /* INT_IS_16BIT */
1098 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1099 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1100 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1103 /* Define macros to initialize and free the failure stack.
1104 Do `return -2' if the alloc fails. */
1106 #ifdef MATCH_MAY_ALLOCATE
1107 #define INIT_FAIL_STACK() \
1109 fail_stack.stack = (fail_stack_elt_t *) \
1110 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1112 if (fail_stack.stack == NULL) \
1115 fail_stack.size = INIT_FAILURE_ALLOC; \
1116 fail_stack.avail = 0; \
1119 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1121 #define INIT_FAIL_STACK() \
1123 fail_stack.avail = 0; \
1126 #define RESET_FAIL_STACK()
1130 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1132 Return 1 if succeeds, and 0 if either ran out of memory
1133 allocating space for it or it was already too large.
1135 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1137 #define DOUBLE_FAIL_STACK(fail_stack) \
1138 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1140 : ((fail_stack).stack = (fail_stack_elt_t *) \
1141 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1142 (fail_stack).size * sizeof (fail_stack_elt_t), \
1143 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1145 (fail_stack).stack == NULL \
1147 : ((fail_stack).size <<= 1, \
1151 /* Push pointer POINTER on FAIL_STACK.
1152 Return 1 if was able to do so and 0 if ran out of memory allocating
1154 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1155 ((FAIL_STACK_FULL () \
1156 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1158 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1161 /* Push a pointer value onto the failure stack.
1162 Assumes the variable `fail_stack'. Probably should only
1163 be called from within `PUSH_FAILURE_POINT'. */
1164 #define PUSH_FAILURE_POINTER(item) \
1165 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1167 /* This pushes an integer-valued item onto the failure stack.
1168 Assumes the variable `fail_stack'. Probably should only
1169 be called from within `PUSH_FAILURE_POINT'. */
1170 #define PUSH_FAILURE_INT(item) \
1171 fail_stack.stack[fail_stack.avail++].integer = (item)
1173 /* Push a fail_stack_elt_t value onto the failure stack.
1174 Assumes the variable `fail_stack'. Probably should only
1175 be called from within `PUSH_FAILURE_POINT'. */
1176 #define PUSH_FAILURE_ELT(item) \
1177 fail_stack.stack[fail_stack.avail++] = (item)
1179 /* These three POP... operations complement the three PUSH... operations.
1180 All assume that `fail_stack' is nonempty. */
1181 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1182 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1183 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1185 /* Used to omit pushing failure point id's when we're not debugging. */
1187 #define DEBUG_PUSH PUSH_FAILURE_INT
1188 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1190 #define DEBUG_PUSH(item)
1191 #define DEBUG_POP(item_addr)
1195 /* Push the information about the state we will need
1196 if we ever fail back to it.
1198 Requires variables fail_stack, regstart, regend, reg_info, and
1199 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1202 Does `return FAILURE_CODE' if runs out of memory. */
1204 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1206 char *destination; \
1207 /* Must be int, so when we don't save any registers, the arithmetic \
1208 of 0 + -1 isn't done as unsigned. */ \
1209 /* Can't be int, since there is not a shred of a guarantee that int \
1210 is wide enough to hold a value of something to which pointer can \
1212 active_reg_t this_reg; \
1214 DEBUG_STATEMENT (failure_id++); \
1215 DEBUG_STATEMENT (nfailure_points_pushed++); \
1216 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1217 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1218 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1220 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1221 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1223 /* Ensure we have enough space allocated for what we will push. */ \
1224 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1226 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1227 return failure_code; \
1229 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1230 (fail_stack).size); \
1231 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1234 /* Push the info, starting with the registers. */ \
1235 DEBUG_PRINT1 ("\n"); \
1238 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1241 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1242 DEBUG_STATEMENT (num_regs_pushed++); \
1244 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1245 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1247 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1248 PUSH_FAILURE_POINTER (regend[this_reg]); \
1250 DEBUG_PRINT2 (" info: %p\n ", \
1251 reg_info[this_reg].word.pointer); \
1252 DEBUG_PRINT2 (" match_null=%d", \
1253 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1254 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1255 DEBUG_PRINT2 (" matched_something=%d", \
1256 MATCHED_SOMETHING (reg_info[this_reg])); \
1257 DEBUG_PRINT2 (" ever_matched=%d", \
1258 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1259 DEBUG_PRINT1 ("\n"); \
1260 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1263 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1264 PUSH_FAILURE_INT (lowest_active_reg); \
1266 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1267 PUSH_FAILURE_INT (highest_active_reg); \
1269 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1270 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1271 PUSH_FAILURE_POINTER (pattern_place); \
1273 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1274 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1276 DEBUG_PRINT1 ("'\n"); \
1277 PUSH_FAILURE_POINTER (string_place); \
1279 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1280 DEBUG_PUSH (failure_id); \
1283 /* This is the number of items that are pushed and popped on the stack
1284 for each register. */
1285 #define NUM_REG_ITEMS 3
1287 /* Individual items aside from the registers. */
1289 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1291 #define NUM_NONREG_ITEMS 4
1294 /* We push at most this many items on the stack. */
1295 /* We used to use (num_regs - 1), which is the number of registers
1296 this regexp will save; but that was changed to 5
1297 to avoid stack overflow for a regexp with lots of parens. */
1298 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1300 /* We actually push this many items. */
1301 #define NUM_FAILURE_ITEMS \
1303 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1307 /* How many items can still be added to the stack without overflowing it. */
1308 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1311 /* Pops what PUSH_FAIL_STACK pushes.
1313 We restore into the parameters, all of which should be lvalues:
1314 STR -- the saved data position.
1315 PAT -- the saved pattern position.
1316 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1317 REGSTART, REGEND -- arrays of string positions.
1318 REG_INFO -- array of information about each subexpression.
1320 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1321 `pend', `string1', `size1', `string2', and `size2'. */
1323 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1325 DEBUG_STATEMENT (unsigned failure_id;) \
1326 active_reg_t this_reg; \
1327 const unsigned char *string_temp; \
1329 assert (!FAIL_STACK_EMPTY ()); \
1331 /* Remove failure points and point to how many regs pushed. */ \
1332 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1333 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1334 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1336 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1338 DEBUG_POP (&failure_id); \
1339 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1341 /* If the saved string location is NULL, it came from an \
1342 on_failure_keep_string_jump opcode, and we want to throw away the \
1343 saved NULL, thus retaining our current position in the string. */ \
1344 string_temp = POP_FAILURE_POINTER (); \
1345 if (string_temp != NULL) \
1346 str = (const char *) string_temp; \
1348 DEBUG_PRINT2 (" Popping string %p: `", str); \
1349 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1350 DEBUG_PRINT1 ("'\n"); \
1352 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1353 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1354 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1356 /* Restore register info. */ \
1357 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1358 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1360 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1361 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1364 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1366 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1368 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1369 DEBUG_PRINT2 (" info: %p\n", \
1370 reg_info[this_reg].word.pointer); \
1372 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1373 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1375 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1376 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1380 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1382 reg_info[this_reg].word.integer = 0; \
1383 regend[this_reg] = 0; \
1384 regstart[this_reg] = 0; \
1386 highest_active_reg = high_reg; \
1389 set_regs_matched_done = 0; \
1390 DEBUG_STATEMENT (nfailure_points_popped++); \
1391 } /* POP_FAILURE_POINT */
1395 /* Structure for per-register (a.k.a. per-group) information.
1396 Other register information, such as the
1397 starting and ending positions (which are addresses), and the list of
1398 inner groups (which is a bits list) are maintained in separate
1401 We are making a (strictly speaking) nonportable assumption here: that
1402 the compiler will pack our bit fields into something that fits into
1403 the type of `word', i.e., is something that fits into one item on the
1407 /* Declarations and macros for re_match_2. */
1411 fail_stack_elt_t word;
1414 /* This field is one if this group can match the empty string,
1415 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1416 #define MATCH_NULL_UNSET_VALUE 3
1417 unsigned match_null_string_p : 2;
1418 unsigned is_active : 1;
1419 unsigned matched_something : 1;
1420 unsigned ever_matched_something : 1;
1422 } register_info_type;
1424 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1425 #define IS_ACTIVE(R) ((R).bits.is_active)
1426 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1427 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1430 /* Call this when have matched a real character; it sets `matched' flags
1431 for the subexpressions which we are currently inside. Also records
1432 that those subexprs have matched. */
1433 #define SET_REGS_MATCHED() \
1436 if (!set_regs_matched_done) \
1439 set_regs_matched_done = 1; \
1440 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1442 MATCHED_SOMETHING (reg_info[r]) \
1443 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1450 /* Registers are set to a sentinel when they haven't yet matched. */
1451 static char reg_unset_dummy;
1452 #define REG_UNSET_VALUE (®_unset_dummy)
1453 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1455 /* Subroutine declarations and macros for regex_compile. */
1457 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1458 reg_syntax_t syntax,
1459 struct re_pattern_buffer *bufp));
1460 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1461 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1462 int arg1, int arg2));
1463 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1464 int arg, unsigned char *end));
1465 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1466 int arg1, int arg2, unsigned char *end));
1467 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1468 reg_syntax_t syntax));
1469 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1470 reg_syntax_t syntax));
1471 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1474 reg_syntax_t syntax,
1477 /* Fetch the next character in the uncompiled pattern---translating it
1478 if necessary. Also cast from a signed character in the constant
1479 string passed to us by the user to an unsigned char that we can use
1480 as an array index (in, e.g., `translate'). */
1482 #define PATFETCH(c) \
1483 do {if (p == pend) return REG_EEND; \
1484 c = (unsigned char) *p++; \
1485 if (translate) c = (unsigned char) translate[c]; \
1489 /* Fetch the next character in the uncompiled pattern, with no
1491 #define PATFETCH_RAW(c) \
1492 do {if (p == pend) return REG_EEND; \
1493 c = (unsigned char) *p++; \
1496 /* Go backwards one character in the pattern. */
1497 #define PATUNFETCH p--
1500 /* If `translate' is non-null, return translate[D], else just D. We
1501 cast the subscript to translate because some data is declared as
1502 `char *', to avoid warnings when a string constant is passed. But
1503 when we use a character as a subscript we must make it unsigned. */
1505 #define TRANSLATE(d) \
1506 (translate ? (char) translate[(unsigned char) (d)] : (d))
1510 /* Macros for outputting the compiled pattern into `buffer'. */
1512 /* If the buffer isn't allocated when it comes in, use this. */
1513 #define INIT_BUF_SIZE 32
1515 /* Make sure we have at least N more bytes of space in buffer. */
1516 #define GET_BUFFER_SPACE(n) \
1517 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1520 /* Make sure we have one more byte of buffer space and then add C to it. */
1521 #define BUF_PUSH(c) \
1523 GET_BUFFER_SPACE (1); \
1524 *b++ = (unsigned char) (c); \
1528 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1529 #define BUF_PUSH_2(c1, c2) \
1531 GET_BUFFER_SPACE (2); \
1532 *b++ = (unsigned char) (c1); \
1533 *b++ = (unsigned char) (c2); \
1537 /* As with BUF_PUSH_2, except for three bytes. */
1538 #define BUF_PUSH_3(c1, c2, c3) \
1540 GET_BUFFER_SPACE (3); \
1541 *b++ = (unsigned char) (c1); \
1542 *b++ = (unsigned char) (c2); \
1543 *b++ = (unsigned char) (c3); \
1547 /* Store a jump with opcode OP at LOC to location TO. We store a
1548 relative address offset by the three bytes the jump itself occupies. */
1549 #define STORE_JUMP(op, loc, to) \
1550 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1552 /* Likewise, for a two-argument jump. */
1553 #define STORE_JUMP2(op, loc, to, arg) \
1554 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1556 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1557 #define INSERT_JUMP(op, loc, to) \
1558 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1560 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1561 #define INSERT_JUMP2(op, loc, to, arg) \
1562 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1565 /* This is not an arbitrary limit: the arguments which represent offsets
1566 into the pattern are two bytes long. So if 2^16 bytes turns out to
1567 be too small, many things would have to change. */
1568 /* Any other compiler which, like MSC, has allocation limit below 2^16
1569 bytes will have to use approach similar to what was done below for
1570 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1571 reallocating to 0 bytes. Such thing is not going to work too well.
1572 You have been warned!! */
1573 #if defined(_MSC_VER) && !defined(WIN32)
1574 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1575 The REALLOC define eliminates a flurry of conversion warnings,
1576 but is not required. */
1577 #define MAX_BUF_SIZE 65500L
1578 #define REALLOC(p,s) realloc ((p), (size_t) (s))
1580 #define MAX_BUF_SIZE (1L << 16)
1581 #define REALLOC(p,s) realloc ((p), (s))
1584 /* Extend the buffer by twice its current size via realloc and
1585 reset the pointers that pointed into the old block to point to the
1586 correct places in the new one. If extending the buffer results in it
1587 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1588 #define EXTEND_BUFFER() \
1590 unsigned char *old_buffer = bufp->buffer; \
1591 if (bufp->allocated == MAX_BUF_SIZE) \
1593 bufp->allocated <<= 1; \
1594 if (bufp->allocated > MAX_BUF_SIZE) \
1595 bufp->allocated = MAX_BUF_SIZE; \
1596 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1597 if (bufp->buffer == NULL) \
1598 return REG_ESPACE; \
1599 /* If the buffer moved, move all the pointers into it. */ \
1600 if (old_buffer != bufp->buffer) \
1602 b = (b - old_buffer) + bufp->buffer; \
1603 begalt = (begalt - old_buffer) + bufp->buffer; \
1604 if (fixup_alt_jump) \
1605 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1607 laststart = (laststart - old_buffer) + bufp->buffer; \
1608 if (pending_exact) \
1609 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1614 /* Since we have one byte reserved for the register number argument to
1615 {start,stop}_memory, the maximum number of groups we can report
1616 things about is what fits in that byte. */
1617 #define MAX_REGNUM 255
1619 /* But patterns can have more than `MAX_REGNUM' registers. We just
1620 ignore the excess. */
1621 typedef unsigned regnum_t;
1624 /* Macros for the compile stack. */
1626 /* Since offsets can go either forwards or backwards, this type needs to
1627 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1628 /* int may be not enough when sizeof(int) == 2. */
1629 typedef long pattern_offset_t;
1633 pattern_offset_t begalt_offset;
1634 pattern_offset_t fixup_alt_jump;
1635 pattern_offset_t inner_group_offset;
1636 pattern_offset_t laststart_offset;
1638 } compile_stack_elt_t;
1643 compile_stack_elt_t *stack;
1645 unsigned avail; /* Offset of next open position. */
1646 } compile_stack_type;
1649 #define INIT_COMPILE_STACK_SIZE 32
1651 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1652 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1654 /* The next available element. */
1655 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1658 /* Set the bit for character C in a list. */
1659 #define SET_LIST_BIT(c) \
1660 (b[((unsigned char) (c)) / BYTEWIDTH] \
1661 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1664 /* Get the next unsigned number in the uncompiled pattern. */
1665 #define GET_UNSIGNED_NUMBER(num) \
1669 while (ISDIGIT (c)) \
1673 num = num * 10 + c - '0'; \
1681 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1682 /* The GNU C library provides support for user-defined character classes
1683 and the functions from ISO C amendement 1. */
1684 # ifdef CHARCLASS_NAME_MAX
1685 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1687 /* This shouldn't happen but some implementation might still have this
1688 problem. Use a reasonable default value. */
1689 # define CHAR_CLASS_MAX_LENGTH 256
1692 # define IS_CHAR_CLASS(string) wctype (string)
1694 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1696 # define IS_CHAR_CLASS(string) \
1697 (STREQ (string, "alpha") || STREQ (string, "upper") \
1698 || STREQ (string, "lower") || STREQ (string, "digit") \
1699 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1700 || STREQ (string, "space") || STREQ (string, "print") \
1701 || STREQ (string, "punct") || STREQ (string, "graph") \
1702 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1705 #ifndef MATCH_MAY_ALLOCATE
1707 /* If we cannot allocate large objects within re_match_2_internal,
1708 we make the fail stack and register vectors global.
1709 The fail stack, we grow to the maximum size when a regexp
1711 The register vectors, we adjust in size each time we
1712 compile a regexp, according to the number of registers it needs. */
1714 static fail_stack_type fail_stack;
1716 /* Size with which the following vectors are currently allocated.
1717 That is so we can make them bigger as needed,
1718 but never make them smaller. */
1719 static int regs_allocated_size;
1721 static const char ** regstart, ** regend;
1722 static const char ** old_regstart, ** old_regend;
1723 static const char **best_regstart, **best_regend;
1724 static register_info_type *reg_info;
1725 static const char **reg_dummy;
1726 static register_info_type *reg_info_dummy;
1728 /* Make the register vectors big enough for NUM_REGS registers,
1729 but don't make them smaller. */
1732 regex_grow_registers (num_regs)
1735 if (num_regs > regs_allocated_size)
1737 RETALLOC_IF (regstart, num_regs, const char *);
1738 RETALLOC_IF (regend, num_regs, const char *);
1739 RETALLOC_IF (old_regstart, num_regs, const char *);
1740 RETALLOC_IF (old_regend, num_regs, const char *);
1741 RETALLOC_IF (best_regstart, num_regs, const char *);
1742 RETALLOC_IF (best_regend, num_regs, const char *);
1743 RETALLOC_IF (reg_info, num_regs, register_info_type);
1744 RETALLOC_IF (reg_dummy, num_regs, const char *);
1745 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1747 regs_allocated_size = num_regs;
1751 #endif /* not MATCH_MAY_ALLOCATE */
1753 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1757 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1758 Returns one of error codes defined in `regex.h', or zero for success.
1760 Assumes the `allocated' (and perhaps `buffer') and `translate'
1761 fields are set in BUFP on entry.
1763 If it succeeds, results are put in BUFP (if it returns an error, the
1764 contents of BUFP are undefined):
1765 `buffer' is the compiled pattern;
1766 `syntax' is set to SYNTAX;
1767 `used' is set to the length of the compiled pattern;
1768 `fastmap_accurate' is zero;
1769 `re_nsub' is the number of subexpressions in PATTERN;
1770 `not_bol' and `not_eol' are zero;
1772 The `fastmap' and `newline_anchor' fields are neither
1773 examined nor set. */
1775 /* Return, freeing storage we allocated. */
1776 #define FREE_STACK_RETURN(value) \
1777 return (free (compile_stack.stack), value)
1779 static reg_errcode_t
1780 regex_compile (pattern, size, syntax, bufp)
1781 const char *pattern;
1783 reg_syntax_t syntax;
1784 struct re_pattern_buffer *bufp;
1786 /* We fetch characters from PATTERN here. Even though PATTERN is
1787 `char *' (i.e., signed), we declare these variables as unsigned, so
1788 they can be reliably used as array indices. */
1789 register unsigned char c, c1;
1791 /* A random temporary spot in PATTERN. */
1794 /* Points to the end of the buffer, where we should append. */
1795 register unsigned char *b;
1797 /* Keeps track of unclosed groups. */
1798 compile_stack_type compile_stack;
1800 /* Points to the current (ending) position in the pattern. */
1801 const char *p = pattern;
1802 const char *pend = pattern + size;
1804 /* How to translate the characters in the pattern. */
1805 RE_TRANSLATE_TYPE translate = bufp->translate;
1807 /* Address of the count-byte of the most recently inserted `exactn'
1808 command. This makes it possible to tell if a new exact-match
1809 character can be added to that command or if the character requires
1810 a new `exactn' command. */
1811 unsigned char *pending_exact = 0;
1813 /* Address of start of the most recently finished expression.
1814 This tells, e.g., postfix * where to find the start of its
1815 operand. Reset at the beginning of groups and alternatives. */
1816 unsigned char *laststart = 0;
1818 /* Address of beginning of regexp, or inside of last group. */
1819 unsigned char *begalt;
1821 /* Place in the uncompiled pattern (i.e., the {) to
1822 which to go back if the interval is invalid. */
1823 const char *beg_interval;
1825 /* Address of the place where a forward jump should go to the end of
1826 the containing expression. Each alternative of an `or' -- except the
1827 last -- ends with a forward jump of this sort. */
1828 unsigned char *fixup_alt_jump = 0;
1830 /* Counts open-groups as they are encountered. Remembered for the
1831 matching close-group on the compile stack, so the same register
1832 number is put in the stop_memory as the start_memory. */
1833 regnum_t regnum = 0;
1836 DEBUG_PRINT1 ("\nCompiling pattern: ");
1839 unsigned debug_count;
1841 for (debug_count = 0; debug_count < size; debug_count++)
1842 putchar (pattern[debug_count]);
1847 /* Initialize the compile stack. */
1848 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1849 if (compile_stack.stack == NULL)
1852 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1853 compile_stack.avail = 0;
1855 /* Initialize the pattern buffer. */
1856 bufp->syntax = syntax;
1857 bufp->fastmap_accurate = 0;
1858 bufp->not_bol = bufp->not_eol = 0;
1860 /* Set `used' to zero, so that if we return an error, the pattern
1861 printer (for debugging) will think there's no pattern. We reset it
1865 /* Always count groups, whether or not bufp->no_sub is set. */
1868 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1869 /* Initialize the syntax table. */
1870 init_syntax_once ();
1873 if (bufp->allocated == 0)
1876 { /* If zero allocated, but buffer is non-null, try to realloc
1877 enough space. This loses if buffer's address is bogus, but
1878 that is the user's responsibility. */
1879 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1882 { /* Caller did not allocate a buffer. Do it for them. */
1883 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1885 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1887 bufp->allocated = INIT_BUF_SIZE;
1890 begalt = b = bufp->buffer;
1892 /* Loop through the uncompiled pattern until we're at the end. */
1901 if ( /* If at start of pattern, it's an operator. */
1903 /* If context independent, it's an operator. */
1904 || syntax & RE_CONTEXT_INDEP_ANCHORS
1905 /* Otherwise, depends on what's come before. */
1906 || at_begline_loc_p (pattern, p, syntax))
1916 if ( /* If at end of pattern, it's an operator. */
1918 /* If context independent, it's an operator. */
1919 || syntax & RE_CONTEXT_INDEP_ANCHORS
1920 /* Otherwise, depends on what's next. */
1921 || at_endline_loc_p (p, pend, syntax))
1931 if ((syntax & RE_BK_PLUS_QM)
1932 || (syntax & RE_LIMITED_OPS))
1936 /* If there is no previous pattern... */
1939 if (syntax & RE_CONTEXT_INVALID_OPS)
1940 FREE_STACK_RETURN (REG_BADRPT);
1941 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1946 /* Are we optimizing this jump? */
1947 boolean keep_string_p = false;
1949 /* 1 means zero (many) matches is allowed. */
1950 char zero_times_ok = 0, many_times_ok = 0;
1952 /* If there is a sequence of repetition chars, collapse it
1953 down to just one (the right one). We can't combine
1954 interval operators with these because of, e.g., `a{2}*',
1955 which should only match an even number of `a's. */
1959 zero_times_ok |= c != '+';
1960 many_times_ok |= c != '?';
1968 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1971 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1973 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1976 if (!(c1 == '+' || c1 == '?'))
1991 /* If we get here, we found another repeat character. */
1994 /* Star, etc. applied to an empty pattern is equivalent
1995 to an empty pattern. */
1999 /* Now we know whether or not zero matches is allowed
2000 and also whether or not two or more matches is allowed. */
2002 { /* More than one repetition is allowed, so put in at the
2003 end a backward relative jump from `b' to before the next
2004 jump we're going to put in below (which jumps from
2005 laststart to after this jump).
2007 But if we are at the `*' in the exact sequence `.*\n',
2008 insert an unconditional jump backwards to the .,
2009 instead of the beginning of the loop. This way we only
2010 push a failure point once, instead of every time
2011 through the loop. */
2012 assert (p - 1 > pattern);
2014 /* Allocate the space for the jump. */
2015 GET_BUFFER_SPACE (3);
2017 /* We know we are not at the first character of the pattern,
2018 because laststart was nonzero. And we've already
2019 incremented `p', by the way, to be the character after
2020 the `*'. Do we have to do something analogous here
2021 for null bytes, because of RE_DOT_NOT_NULL? */
2022 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2024 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2025 && !(syntax & RE_DOT_NEWLINE))
2026 { /* We have .*\n. */
2027 STORE_JUMP (jump, b, laststart);
2028 keep_string_p = true;
2031 /* Anything else. */
2032 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2034 /* We've added more stuff to the buffer. */
2038 /* On failure, jump from laststart to b + 3, which will be the
2039 end of the buffer after this jump is inserted. */
2040 GET_BUFFER_SPACE (3);
2041 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2049 /* At least one repetition is required, so insert a
2050 `dummy_failure_jump' before the initial
2051 `on_failure_jump' instruction of the loop. This
2052 effects a skip over that instruction the first time
2053 we hit that loop. */
2054 GET_BUFFER_SPACE (3);
2055 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2070 boolean had_char_class = false;
2072 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2074 /* Ensure that we have enough space to push a charset: the
2075 opcode, the length count, and the bitset; 34 bytes in all. */
2076 GET_BUFFER_SPACE (34);
2080 /* We test `*p == '^' twice, instead of using an if
2081 statement, so we only need one BUF_PUSH. */
2082 BUF_PUSH (*p == '^' ? charset_not : charset);
2086 /* Remember the first position in the bracket expression. */
2089 /* Push the number of bytes in the bitmap. */
2090 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2092 /* Clear the whole map. */
2093 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2095 /* charset_not matches newline according to a syntax bit. */
2096 if ((re_opcode_t) b[-2] == charset_not
2097 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2098 SET_LIST_BIT ('\n');
2100 /* Read in characters and ranges, setting map bits. */
2103 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2107 /* \ might escape characters inside [...] and [^...]. */
2108 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2110 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2117 /* Could be the end of the bracket expression. If it's
2118 not (i.e., when the bracket expression is `[]' so
2119 far), the ']' character bit gets set way below. */
2120 if (c == ']' && p != p1 + 1)
2123 /* Look ahead to see if it's a range when the last thing
2124 was a character class. */
2125 if (had_char_class && c == '-' && *p != ']')
2126 FREE_STACK_RETURN (REG_ERANGE);
2128 /* Look ahead to see if it's a range when the last thing
2129 was a character: if this is a hyphen not at the
2130 beginning or the end of a list, then it's the range
2133 && !(p - 2 >= pattern && p[-2] == '[')
2134 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2138 = compile_range (&p, pend, translate, syntax, b);
2139 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2142 else if (p[0] == '-' && p[1] != ']')
2143 { /* This handles ranges made up of characters only. */
2146 /* Move past the `-'. */
2149 ret = compile_range (&p, pend, translate, syntax, b);
2150 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2153 /* See if we're at the beginning of a possible character
2156 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2157 { /* Leave room for the null. */
2158 char str[CHAR_CLASS_MAX_LENGTH + 1];
2163 /* If pattern is `[[:'. */
2164 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2169 if (c == ':' || c == ']' || p == pend
2170 || c1 == CHAR_CLASS_MAX_LENGTH)
2176 /* If isn't a word bracketed by `[:' and:`]':
2177 undo the ending character, the letters, and leave
2178 the leading `:' and `[' (but set bits for them). */
2179 if (c == ':' && *p == ']')
2181 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2182 boolean is_lower = STREQ (str, "lower");
2183 boolean is_upper = STREQ (str, "upper");
2189 FREE_STACK_RETURN (REG_ECTYPE);
2191 /* Throw away the ] at the end of the character
2195 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2197 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2199 if (iswctype (btowc (ch), wt))
2202 if (translate && (is_upper || is_lower)
2203 && (ISUPPER (ch) || ISLOWER (ch)))
2207 had_char_class = true;
2210 boolean is_alnum = STREQ (str, "alnum");
2211 boolean is_alpha = STREQ (str, "alpha");
2212 boolean is_blank = STREQ (str, "blank");
2213 boolean is_cntrl = STREQ (str, "cntrl");
2214 boolean is_digit = STREQ (str, "digit");
2215 boolean is_graph = STREQ (str, "graph");
2216 boolean is_lower = STREQ (str, "lower");
2217 boolean is_print = STREQ (str, "print");
2218 boolean is_punct = STREQ (str, "punct");
2219 boolean is_space = STREQ (str, "space");
2220 boolean is_upper = STREQ (str, "upper");
2221 boolean is_xdigit = STREQ (str, "xdigit");
2223 if (!IS_CHAR_CLASS (str))
2224 FREE_STACK_RETURN (REG_ECTYPE);
2226 /* Throw away the ] at the end of the character
2230 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2232 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2234 /* This was split into 3 if's to
2235 avoid an arbitrary limit in some compiler. */
2236 if ( (is_alnum && ISALNUM (ch))
2237 || (is_alpha && ISALPHA (ch))
2238 || (is_blank && ISBLANK (ch))
2239 || (is_cntrl && ISCNTRL (ch)))
2241 if ( (is_digit && ISDIGIT (ch))
2242 || (is_graph && ISGRAPH (ch))
2243 || (is_lower && ISLOWER (ch))
2244 || (is_print && ISPRINT (ch)))
2246 if ( (is_punct && ISPUNCT (ch))
2247 || (is_space && ISSPACE (ch))
2248 || (is_upper && ISUPPER (ch))
2249 || (is_xdigit && ISXDIGIT (ch)))
2251 if ( translate && (is_upper || is_lower)
2252 && (ISUPPER (ch) || ISLOWER (ch)))
2255 had_char_class = true;
2256 #endif /* libc || wctype.h */
2265 had_char_class = false;
2270 had_char_class = false;
2275 /* Discard any (non)matching list bytes that are all 0 at the
2276 end of the map. Decrease the map-length byte too. */
2277 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2285 if (syntax & RE_NO_BK_PARENS)
2292 if (syntax & RE_NO_BK_PARENS)
2299 if (syntax & RE_NEWLINE_ALT)
2306 if (syntax & RE_NO_BK_VBAR)
2313 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2314 goto handle_interval;
2320 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2322 /* Do not translate the character after the \, so that we can
2323 distinguish, e.g., \B from \b, even if we normally would
2324 translate, e.g., B to b. */
2330 if (syntax & RE_NO_BK_PARENS)
2331 goto normal_backslash;
2337 if (COMPILE_STACK_FULL)
2339 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2340 compile_stack_elt_t);
2341 if (compile_stack.stack == NULL) return REG_ESPACE;
2343 compile_stack.size <<= 1;
2346 /* These are the values to restore when we hit end of this
2347 group. They are all relative offsets, so that if the
2348 whole pattern moves because of realloc, they will still
2350 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2351 COMPILE_STACK_TOP.fixup_alt_jump
2352 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2353 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2354 COMPILE_STACK_TOP.regnum = regnum;
2356 /* We will eventually replace the 0 with the number of
2357 groups inner to this one. But do not push a
2358 start_memory for groups beyond the last one we can
2359 represent in the compiled pattern. */
2360 if (regnum <= MAX_REGNUM)
2362 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2363 BUF_PUSH_3 (start_memory, regnum, 0);
2366 compile_stack.avail++;
2371 /* If we've reached MAX_REGNUM groups, then this open
2372 won't actually generate any code, so we'll have to
2373 clear pending_exact explicitly. */
2379 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2381 if (COMPILE_STACK_EMPTY)
2382 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2383 goto normal_backslash;
2385 FREE_STACK_RETURN (REG_ERPAREN);
2389 { /* Push a dummy failure point at the end of the
2390 alternative for a possible future
2391 `pop_failure_jump' to pop. See comments at
2392 `push_dummy_failure' in `re_match_2'. */
2393 BUF_PUSH (push_dummy_failure);
2395 /* We allocated space for this jump when we assigned
2396 to `fixup_alt_jump', in the `handle_alt' case below. */
2397 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2400 /* See similar code for backslashed left paren above. */
2401 if (COMPILE_STACK_EMPTY)
2402 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2405 FREE_STACK_RETURN (REG_ERPAREN);
2407 /* Since we just checked for an empty stack above, this
2408 ``can't happen''. */
2409 assert (compile_stack.avail != 0);
2411 /* We don't just want to restore into `regnum', because
2412 later groups should continue to be numbered higher,
2413 as in `(ab)c(de)' -- the second group is #2. */
2414 regnum_t this_group_regnum;
2416 compile_stack.avail--;
2417 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2419 = COMPILE_STACK_TOP.fixup_alt_jump
2420 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2422 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2423 this_group_regnum = COMPILE_STACK_TOP.regnum;
2424 /* If we've reached MAX_REGNUM groups, then this open
2425 won't actually generate any code, so we'll have to
2426 clear pending_exact explicitly. */
2429 /* We're at the end of the group, so now we know how many
2430 groups were inside this one. */
2431 if (this_group_regnum <= MAX_REGNUM)
2433 unsigned char *inner_group_loc
2434 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2436 *inner_group_loc = regnum - this_group_regnum;
2437 BUF_PUSH_3 (stop_memory, this_group_regnum,
2438 regnum - this_group_regnum);
2444 case '|': /* `\|'. */
2445 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2446 goto normal_backslash;
2448 if (syntax & RE_LIMITED_OPS)
2451 /* Insert before the previous alternative a jump which
2452 jumps to this alternative if the former fails. */
2453 GET_BUFFER_SPACE (3);
2454 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2458 /* The alternative before this one has a jump after it
2459 which gets executed if it gets matched. Adjust that
2460 jump so it will jump to this alternative's analogous
2461 jump (put in below, which in turn will jump to the next
2462 (if any) alternative's such jump, etc.). The last such
2463 jump jumps to the correct final destination. A picture:
2469 If we are at `b', then fixup_alt_jump right now points to a
2470 three-byte space after `a'. We'll put in the jump, set
2471 fixup_alt_jump to right after `b', and leave behind three
2472 bytes which we'll fill in when we get to after `c'. */
2475 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2477 /* Mark and leave space for a jump after this alternative,
2478 to be filled in later either by next alternative or
2479 when know we're at the end of a series of alternatives. */
2481 GET_BUFFER_SPACE (3);
2490 /* If \{ is a literal. */
2491 if (!(syntax & RE_INTERVALS)
2492 /* If we're at `\{' and it's not the open-interval
2494 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2495 || (p - 2 == pattern && p == pend))
2496 goto normal_backslash;
2500 /* If got here, then the syntax allows intervals. */
2502 /* At least (most) this many matches must be made. */
2503 int lower_bound = -1, upper_bound = -1;
2505 beg_interval = p - 1;
2509 if (syntax & RE_NO_BK_BRACES)
2510 goto unfetch_interval;
2512 FREE_STACK_RETURN (REG_EBRACE);
2515 GET_UNSIGNED_NUMBER (lower_bound);
2519 GET_UNSIGNED_NUMBER (upper_bound);
2520 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2523 /* Interval such as `{1}' => match exactly once. */
2524 upper_bound = lower_bound;
2526 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2527 || lower_bound > upper_bound)
2529 if (syntax & RE_NO_BK_BRACES)
2530 goto unfetch_interval;
2532 FREE_STACK_RETURN (REG_BADBR);
2535 if (!(syntax & RE_NO_BK_BRACES))
2537 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2544 if (syntax & RE_NO_BK_BRACES)
2545 goto unfetch_interval;
2547 FREE_STACK_RETURN (REG_BADBR);
2550 /* We just parsed a valid interval. */
2552 /* If it's invalid to have no preceding re. */
2555 if (syntax & RE_CONTEXT_INVALID_OPS)
2556 FREE_STACK_RETURN (REG_BADRPT);
2557 else if (syntax & RE_CONTEXT_INDEP_OPS)
2560 goto unfetch_interval;
2563 /* If the upper bound is zero, don't want to succeed at
2564 all; jump from `laststart' to `b + 3', which will be
2565 the end of the buffer after we insert the jump. */
2566 if (upper_bound == 0)
2568 GET_BUFFER_SPACE (3);
2569 INSERT_JUMP (jump, laststart, b + 3);
2573 /* Otherwise, we have a nontrivial interval. When
2574 we're all done, the pattern will look like:
2575 set_number_at <jump count> <upper bound>
2576 set_number_at <succeed_n count> <lower bound>
2577 succeed_n <after jump addr> <succeed_n count>
2579 jump_n <succeed_n addr> <jump count>
2580 (The upper bound and `jump_n' are omitted if
2581 `upper_bound' is 1, though.) */
2583 { /* If the upper bound is > 1, we need to insert
2584 more at the end of the loop. */
2585 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2587 GET_BUFFER_SPACE (nbytes);
2589 /* Initialize lower bound of the `succeed_n', even
2590 though it will be set during matching by its
2591 attendant `set_number_at' (inserted next),
2592 because `re_compile_fastmap' needs to know.
2593 Jump to the `jump_n' we might insert below. */
2594 INSERT_JUMP2 (succeed_n, laststart,
2595 b + 5 + (upper_bound > 1) * 5,
2599 /* Code to initialize the lower bound. Insert
2600 before the `succeed_n'. The `5' is the last two
2601 bytes of this `set_number_at', plus 3 bytes of
2602 the following `succeed_n'. */
2603 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2606 if (upper_bound > 1)
2607 { /* More than one repetition is allowed, so
2608 append a backward jump to the `succeed_n'
2609 that starts this interval.
2611 When we've reached this during matching,
2612 we'll have matched the interval once, so
2613 jump back only `upper_bound - 1' times. */
2614 STORE_JUMP2 (jump_n, b, laststart + 5,
2618 /* The location we want to set is the second
2619 parameter of the `jump_n'; that is `b-2' as
2620 an absolute address. `laststart' will be
2621 the `set_number_at' we're about to insert;
2622 `laststart+3' the number to set, the source
2623 for the relative address. But we are
2624 inserting into the middle of the pattern --
2625 so everything is getting moved up by 5.
2626 Conclusion: (b - 2) - (laststart + 3) + 5,
2627 i.e., b - laststart.
2629 We insert this at the beginning of the loop
2630 so that if we fail during matching, we'll
2631 reinitialize the bounds. */
2632 insert_op2 (set_number_at, laststart, b - laststart,
2633 upper_bound - 1, b);
2638 beg_interval = NULL;
2643 /* If an invalid interval, match the characters as literals. */
2644 assert (beg_interval);
2646 beg_interval = NULL;
2648 /* normal_char and normal_backslash need `c'. */
2651 if (!(syntax & RE_NO_BK_BRACES))
2653 if (p > pattern && p[-1] == '\\')
2654 goto normal_backslash;
2659 /* There is no way to specify the before_dot and after_dot
2660 operators. rms says this is ok. --karl */
2668 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2674 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2680 if (re_syntax_options & RE_NO_GNU_OPS)
2683 BUF_PUSH (wordchar);
2688 if (re_syntax_options & RE_NO_GNU_OPS)
2691 BUF_PUSH (notwordchar);
2696 if (re_syntax_options & RE_NO_GNU_OPS)
2702 if (re_syntax_options & RE_NO_GNU_OPS)
2708 if (re_syntax_options & RE_NO_GNU_OPS)
2710 BUF_PUSH (wordbound);
2714 if (re_syntax_options & RE_NO_GNU_OPS)
2716 BUF_PUSH (notwordbound);
2720 if (re_syntax_options & RE_NO_GNU_OPS)
2726 if (re_syntax_options & RE_NO_GNU_OPS)
2731 case '1': case '2': case '3': case '4': case '5':
2732 case '6': case '7': case '8': case '9':
2733 if (syntax & RE_NO_BK_REFS)
2739 FREE_STACK_RETURN (REG_ESUBREG);
2741 /* Can't back reference to a subexpression if inside of it. */
2742 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2746 BUF_PUSH_2 (duplicate, c1);
2752 if (syntax & RE_BK_PLUS_QM)
2755 goto normal_backslash;
2759 /* You might think it would be useful for \ to mean
2760 not to translate; but if we don't translate it
2761 it will never match anything. */
2769 /* Expects the character in `c'. */
2771 /* If no exactn currently being built. */
2774 /* If last exactn not at current position. */
2775 || pending_exact + *pending_exact + 1 != b
2777 /* We have only one byte following the exactn for the count. */
2778 || *pending_exact == (1 << BYTEWIDTH) - 1
2780 /* If followed by a repetition operator. */
2781 || *p == '*' || *p == '^'
2782 || ((syntax & RE_BK_PLUS_QM)
2783 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2784 : (*p == '+' || *p == '?'))
2785 || ((syntax & RE_INTERVALS)
2786 && ((syntax & RE_NO_BK_BRACES)
2788 : (p[0] == '\\' && p[1] == '{'))))
2790 /* Start building a new exactn. */
2794 BUF_PUSH_2 (exactn, 0);
2795 pending_exact = b - 1;
2802 } /* while p != pend */
2805 /* Through the pattern now. */
2808 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2810 if (!COMPILE_STACK_EMPTY)
2811 FREE_STACK_RETURN (REG_EPAREN);
2813 /* If we don't want backtracking, force success
2814 the first time we reach the end of the compiled pattern. */
2815 if (syntax & RE_NO_POSIX_BACKTRACKING)
2818 free (compile_stack.stack);
2820 /* We have succeeded; set the length of the buffer. */
2821 bufp->used = b - bufp->buffer;
2826 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2827 print_compiled_pattern (bufp);
2831 #ifndef MATCH_MAY_ALLOCATE
2832 /* Initialize the failure stack to the largest possible stack. This
2833 isn't necessary unless we're trying to avoid calling alloca in
2834 the search and match routines. */
2836 int num_regs = bufp->re_nsub + 1;
2838 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2839 is strictly greater than re_max_failures, the largest possible stack
2840 is 2 * re_max_failures failure points. */
2841 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2843 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2846 if (! fail_stack.stack)
2848 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2849 * sizeof (fail_stack_elt_t));
2852 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2854 * sizeof (fail_stack_elt_t)));
2855 #else /* not emacs */
2856 if (! fail_stack.stack)
2858 = (fail_stack_elt_t *) malloc (fail_stack.size
2859 * sizeof (fail_stack_elt_t));
2862 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2864 * sizeof (fail_stack_elt_t)));
2865 #endif /* not emacs */
2868 regex_grow_registers (num_regs);
2870 #endif /* not MATCH_MAY_ALLOCATE */
2873 } /* regex_compile */
2875 /* Subroutines for `regex_compile'. */
2877 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2880 store_op1 (op, loc, arg)
2885 *loc = (unsigned char) op;
2886 STORE_NUMBER (loc + 1, arg);
2890 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2893 store_op2 (op, loc, arg1, arg2)
2898 *loc = (unsigned char) op;
2899 STORE_NUMBER (loc + 1, arg1);
2900 STORE_NUMBER (loc + 3, arg2);
2904 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2905 for OP followed by two-byte integer parameter ARG. */
2908 insert_op1 (op, loc, arg, end)
2914 register unsigned char *pfrom = end;
2915 register unsigned char *pto = end + 3;
2917 while (pfrom != loc)
2920 store_op1 (op, loc, arg);
2924 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2927 insert_op2 (op, loc, arg1, arg2, end)
2933 register unsigned char *pfrom = end;
2934 register unsigned char *pto = end + 5;
2936 while (pfrom != loc)
2939 store_op2 (op, loc, arg1, arg2);
2943 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2944 after an alternative or a begin-subexpression. We assume there is at
2945 least one character before the ^. */
2948 at_begline_loc_p (pattern, p, syntax)
2949 const char *pattern, *p;
2950 reg_syntax_t syntax;
2952 const char *prev = p - 2;
2953 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2956 /* After a subexpression? */
2957 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2958 /* After an alternative? */
2959 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2963 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2964 at least one character after the $, i.e., `P < PEND'. */
2967 at_endline_loc_p (p, pend, syntax)
2968 const char *p, *pend;
2969 reg_syntax_t syntax;
2971 const char *next = p;
2972 boolean next_backslash = *next == '\\';
2973 const char *next_next = p + 1 < pend ? p + 1 : 0;
2976 /* Before a subexpression? */
2977 (syntax & RE_NO_BK_PARENS ? *next == ')'
2978 : next_backslash && next_next && *next_next == ')')
2979 /* Before an alternative? */
2980 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2981 : next_backslash && next_next && *next_next == '|');
2985 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2986 false if it's not. */
2989 group_in_compile_stack (compile_stack, regnum)
2990 compile_stack_type compile_stack;
2995 for (this_element = compile_stack.avail - 1;
2998 if (compile_stack.stack[this_element].regnum == regnum)
3005 /* Read the ending character of a range (in a bracket expression) from the
3006 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3007 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3008 Then we set the translation of all bits between the starting and
3009 ending characters (inclusive) in the compiled pattern B.
3011 Return an error code.
3013 We use these short variable names so we can use the same macros as
3014 `regex_compile' itself. */
3016 static reg_errcode_t
3017 compile_range (p_ptr, pend, translate, syntax, b)
3018 const char **p_ptr, *pend;
3019 RE_TRANSLATE_TYPE translate;
3020 reg_syntax_t syntax;
3025 const char *p = *p_ptr;
3026 unsigned int range_start, range_end;
3031 /* Even though the pattern is a signed `char *', we need to fetch
3032 with unsigned char *'s; if the high bit of the pattern character
3033 is set, the range endpoints will be negative if we fetch using a
3036 We also want to fetch the endpoints without translating them; the
3037 appropriate translation is done in the bit-setting loop below. */
3038 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3039 range_start = ((const unsigned char *) p)[-2];
3040 range_end = ((const unsigned char *) p)[0];
3042 /* Have to increment the pointer into the pattern string, so the
3043 caller isn't still at the ending character. */
3046 /* If the start is after the end, the range is empty. */
3047 if (range_start > range_end)
3048 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3050 /* Here we see why `this_char' has to be larger than an `unsigned
3051 char' -- the range is inclusive, so if `range_end' == 0xff
3052 (assuming 8-bit characters), we would otherwise go into an infinite
3053 loop, since all characters <= 0xff. */
3054 for (this_char = range_start; this_char <= range_end; this_char++)
3056 SET_LIST_BIT (TRANSLATE (this_char));
3062 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3063 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3064 characters can start a string that matches the pattern. This fastmap
3065 is used by re_search to skip quickly over impossible starting points.
3067 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3068 area as BUFP->fastmap.
3070 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3073 Returns 0 if we succeed, -2 if an internal error. */
3076 re_compile_fastmap (bufp)
3077 struct re_pattern_buffer *bufp;
3080 #ifdef MATCH_MAY_ALLOCATE
3081 fail_stack_type fail_stack;
3083 #ifndef REGEX_MALLOC
3086 /* We don't push any register information onto the failure stack. */
3087 unsigned num_regs = 0;
3089 register char *fastmap = bufp->fastmap;
3090 unsigned char *pattern = bufp->buffer;
3091 unsigned char *p = pattern;
3092 register unsigned char *pend = pattern + bufp->used;
3095 /* This holds the pointer to the failure stack, when
3096 it is allocated relocatably. */
3097 fail_stack_elt_t *failure_stack_ptr;
3100 /* Assume that each path through the pattern can be null until
3101 proven otherwise. We set this false at the bottom of switch
3102 statement, to which we get only if a particular path doesn't
3103 match the empty string. */
3104 boolean path_can_be_null = true;
3106 /* We aren't doing a `succeed_n' to begin with. */
3107 boolean succeed_n_p = false;
3109 assert (fastmap != NULL && p != NULL);
3112 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3113 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3114 bufp->can_be_null = 0;
3118 if (p == pend || *p == succeed)
3120 /* We have reached the (effective) end of pattern. */
3121 if (!FAIL_STACK_EMPTY ())
3123 bufp->can_be_null |= path_can_be_null;
3125 /* Reset for next path. */
3126 path_can_be_null = true;
3128 p = fail_stack.stack[--fail_stack.avail].pointer;
3136 /* We should never be about to go beyond the end of the pattern. */
3139 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3142 /* I guess the idea here is to simply not bother with a fastmap
3143 if a backreference is used, since it's too hard to figure out
3144 the fastmap for the corresponding group. Setting
3145 `can_be_null' stops `re_search_2' from using the fastmap, so
3146 that is all we do. */
3148 bufp->can_be_null = 1;
3152 /* Following are the cases which match a character. These end
3161 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3162 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3168 /* Chars beyond end of map must be allowed. */
3169 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3172 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3173 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3179 for (j = 0; j < (1 << BYTEWIDTH); j++)
3180 if (SYNTAX (j) == Sword)
3186 for (j = 0; j < (1 << BYTEWIDTH); j++)
3187 if (SYNTAX (j) != Sword)
3194 int fastmap_newline = fastmap['\n'];
3196 /* `.' matches anything ... */
3197 for (j = 0; j < (1 << BYTEWIDTH); j++)
3200 /* ... except perhaps newline. */
3201 if (!(bufp->syntax & RE_DOT_NEWLINE))
3202 fastmap['\n'] = fastmap_newline;
3204 /* Return if we have already set `can_be_null'; if we have,
3205 then the fastmap is irrelevant. Something's wrong here. */
3206 else if (bufp->can_be_null)
3209 /* Otherwise, have to check alternative paths. */
3216 for (j = 0; j < (1 << BYTEWIDTH); j++)
3217 if (SYNTAX (j) == (enum syntaxcode) k)
3224 for (j = 0; j < (1 << BYTEWIDTH); j++)
3225 if (SYNTAX (j) != (enum syntaxcode) k)
3230 /* All cases after this match the empty string. These end with
3250 case push_dummy_failure:
3255 case pop_failure_jump:
3256 case maybe_pop_jump:
3259 case dummy_failure_jump:
3260 EXTRACT_NUMBER_AND_INCR (j, p);
3265 /* Jump backward implies we just went through the body of a
3266 loop and matched nothing. Opcode jumped to should be
3267 `on_failure_jump' or `succeed_n'. Just treat it like an
3268 ordinary jump. For a * loop, it has pushed its failure
3269 point already; if so, discard that as redundant. */
3270 if ((re_opcode_t) *p != on_failure_jump
3271 && (re_opcode_t) *p != succeed_n)
3275 EXTRACT_NUMBER_AND_INCR (j, p);
3278 /* If what's on the stack is where we are now, pop it. */
3279 if (!FAIL_STACK_EMPTY ()
3280 && fail_stack.stack[fail_stack.avail - 1].pointer == p)