2005-04-05 H.J. Lu <hongjiu.lu@intel.com>
[kopensolaris-gnu/glibc.git] / sysdeps / ia64 / fpu / e_log.S
1 .file "log.s"
2
3
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
12 //
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
15 //
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
19 //
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
23
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 //
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
39 //
40 // History
41 //==============================================================
42 // 02/02/00 Initial version
43 // 04/04/00 Unwind support added
44 // 06/16/00 Updated table to be rounded correctly
45 // 08/15/00 Bundle added after call to __libm_error_support to properly
46 //          set [the previously overwritten] GR_Parameter_RESULT.
47 // 08/17/00 Improved speed of main path by 5 cycles
48 //          Shortened path for x=1.0
49 // 01/09/01 Improved speed, fixed flags for neg denormals
50 // 05/20/02 Cleaned up namespace and sf0 syntax
51 // 05/23/02 Modified algorithm. Now only one polynomial is used
52 //          for |x-1| >= 1/256 and for |x-1| < 1/256
53 // 12/11/02 Improved performance for Itanium 2
54 // 03/31/05 Reformatted delimiters between data tables
55 //
56 // API
57 //==============================================================
58 // double log(double)
59 // double log10(double)
60 //
61 //
62 // Overview of operation
63 //==============================================================
64 // Background
65 // ----------
66 //
67 // This algorithm is based on fact that
68 // log(a b) = log(a) + log(b).
69 // In our case we have x = 2^N f, where 1 <= f < 2.
70 // So
71 //   log(x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
72 //
73 // To calculate log(f) we do following
74 //   log(f) = log(f * frcpa(f) / frcpa(f)) =
75 //          = log(f * frcpa(f)) + log(1/frcpa(f))
76 //
77 // According to definition of IA-64's frcpa instruction it's a
78 // floating point that approximates 1/f using a lookup on the
79 // top of 8 bits of the input number's significand with relative
80 // error < 2^(-8.886). So we have following
81 //
82 // |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
83 //
84 // and
85 //
86 // log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
87 //        = log(1 + r) + T
88 //
89 // The first value can be computed by polynomial P(r) approximating
90 // log(1 + r) on |r| < 1/256 and the second is precomputed tabular
91 // value defined by top 8 bit of f.
92 //
93 // Finally we have that  log(x) ~ (N*log(2) + T) + P(r)
94 //
95 // Note that if input argument is close to 1.0 (in our case it means
96 // that |1 - x| < 1/256) we can use just polynomial approximation
97 // because x = 2^0 * f = f = 1 + r and
98 // log(x) = log(1 + r) ~ P(r)
99 //
100 //
101 // To compute log10(x) we use the simple identity
102 //
103 //  log10(x) = log(x)/log(10)
104 //
105 // so we have that
106 //
107 //  log10(x) = (N*log(2) + T  + log(1+r)) / log(10) =
108 //           = N*(log(2)/log(10)) + (T/log(10)) + log(1 + r)/log(10)
109 //
110 //
111 // Implementation
112 // --------------
113 // It can be seen that formulas for log and log10 differ from one another
114 // only by coefficients and tabular values. Namely as log as log10 are
115 // calculated as (N*L1 + T) + L2*Series(r) where in case of log
116 //   L1 = log(2)
117 //   T  = log(1/frcpa(x))
118 //   L2 = 1.0
119 // and in case of log10
120 //   L1 = log(2)/log(10)
121 //   T  = log(1/frcpa(x))/log(10)
122 //   L2 = 1.0/log(10)
123 //
124 // So common code with two different entry points those set pointers
125 // to the base address of coresponding data sets containing values
126 // of L2,T and prepare integer representation of L1 needed for following
127 // setf instruction.
128 //
129 // Note that both log and log10 use common approximation polynomial
130 // it means we need only one set of coefficients of approximation.
131 //
132 //
133 // 1. |x-1| >= 1/256
134 //   InvX = frcpa(x)
135 //   r = InvX*x - 1
136 //   P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
137 //   all coefficients are calcutated in quad and rounded to double
138 //   precision. A7,A6,A5,A4 are stored in memory whereas A3 and A2
139 //   created with setf.
140 //
141 //   N = float(n) where n is true unbiased exponent of x
142 //
143 //   T is tabular value of log(1/frcpa(x)) calculated in quad precision
144 //   and represented by two floating-point numbers 64-bit Thi and 32-bit Tlo.
145 //   To load Thi,Tlo we get bits from 55 to 62 of register format significand
146 //   as index and calculate two addresses
147 //     ad_Thi = Thi_table_base_addr + 8 * index
148 //     ad_Tlo = Tlo_table_base_addr + 4 * index
149 //
150 //   L2 (1.0 or 1.0/log(10) depending on function) is calculated in quad
151 //   precision and rounded to double extended; it's loaded from memory.
152 //
153 //   L1 (log(2) or log10(2) depending on function) is calculated in quad
154 //   precision and represented by two floating-point 64-bit numbers L1hi,L1lo
155 //   stored in memory.
156 //
157 //   And final result = ((L1hi*N + Thi) + (N*L1lo + Tlo)) + L2*P(r)
158 //
159 //
160 // 2. |x-1| < 1/256
161 //   r = x - 1
162 //   P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
163 //   A7,A6,A5A4,A3,A2 are the same as in case |x-1| >= 1/256
164 //
165 //   And final results
166 //     log(x)   = P(r)
167 //     log10(x) = L2*P(r)
168 //
169 // 3. How we define is input argument such that |x-1| < 1/256 or not.
170 //
171 //    To do it we analyze biased exponent and integer representation of
172 //    input argument
173 //
174 //      a) First we test is biased exponent equal to 0xFFFE or 0xFFFF (i.e.
175 //         we test is 0.5 <= x < 2). This comparison can be performed using
176 //         unsigned version of cmp instruction in such a way
177 //         biased_exponent_of_x - 0xFFFE < 2
178 //
179 //
180 //      b) Second (in case when result of a) is true) we need to compare x
181 //         with 1-1/256 and 1+1/256 or in double precision memory representation
182 //         with 0x3FEFE00000000000 and 0x3FF0100000000000 correspondingly.
183 //         This comparison can be made like in a), using unsigned
184 //         version of cmp i.e. ix - 0x3FEFE00000000000 < 0x0000300000000000.
185 //         0x0000300000000000 is difference between 0x3FF0100000000000 and
186 //         0x3FEFE00000000000
187 //
188 //    Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
189 //          filtered and processed on special branches.
190 //
191
192 //
193 // Special values
194 //==============================================================
195 //
196 // log(+0)    = -inf
197 // log(-0)    = -inf
198 //
199 // log(+qnan) = +qnan
200 // log(-qnan) = -qnan
201 // log(+snan) = +qnan
202 // log(-snan) = -qnan
203 //
204 // log(-n)    = QNAN Indefinite
205 // log(-inf)  = QNAN Indefinite
206 //
207 // log(+inf)  = +inf
208 //
209 //
210 // Registers used
211 //==============================================================
212 // Floating Point registers used:
213 // f8, input
214 // f7 -> f15,  f32 -> f42
215 //
216 // General registers used:
217 // r8  -> r11
218 // r14 -> r23
219 //
220 // Predicate registers used:
221 // p6 -> p15
222
223 // Assembly macros
224 //==============================================================
225 GR_TAG                 = r8
226 GR_ad_1                = r8
227 GR_ad_2                = r9
228 GR_Exp                 = r10
229 GR_N                   = r11
230
231 GR_x                   = r14
232 GR_dx                  = r15
233 GR_NearOne             = r15
234 GR_xorg                = r16
235 GR_mask                = r16
236 GR_05                  = r17
237 GR_A3                  = r18
238 GR_Sig                 = r19
239 GR_Ind                 = r19
240 GR_Nm1                 = r20
241 GR_bias                = r21
242 GR_ad_3                = r22
243 GR_rexp                = r23
244
245
246 GR_SAVE_B0             = r33
247 GR_SAVE_PFS            = r34
248 GR_SAVE_GP             = r35
249 GR_SAVE_SP             = r36
250
251 GR_Parameter_X         = r37
252 GR_Parameter_Y         = r38
253 GR_Parameter_RESULT    = r39
254 GR_Parameter_TAG       = r40
255
256
257
258 FR_NormX               = f7
259 FR_RcpX                = f9
260 FR_tmp                 = f9
261 FR_r                   = f10
262 FR_r2                  = f11
263 FR_r4                  = f12
264 FR_N                   = f13
265 FR_Ln2hi               = f14
266 FR_Ln2lo               = f15
267
268 FR_A7                  = f32
269 FR_A6                  = f33
270 FR_A5                  = f34
271 FR_A4                  = f35
272 FR_A3                  = f36
273 FR_A2                  = f37
274
275 FR_Thi                 = f38
276 FR_NxLn2hipThi         = f38
277 FR_NxLn2pT             = f38
278 FR_Tlo                 = f39
279 FR_NxLn2lopTlo         = f39
280
281 FR_InvLn10             = f40
282 FR_A32                 = f41
283 FR_A321                = f42
284
285
286 FR_Y                   = f1
287 FR_X                   = f10
288 FR_RESULT              = f8
289
290
291 // Data
292 //==============================================================
293 RODATA
294 .align 16
295
296 LOCAL_OBJECT_START(log_data)
297 // coefficients of polynomial approximation
298 data8 0x3FC2494104381A8E // A7
299 data8 0xBFC5556D556BBB69 // A6
300 //
301 // two parts of ln(2)
302 data8 0x3FE62E42FEF00000,0x3DD473DE6AF278ED
303 //
304 data8 0x8000000000000000,0x3FFF // 1.0
305 //
306 data8 0x3FC999999988B5E9 // A5
307 data8 0xBFCFFFFFFFF6FFF5 // A4
308 //
309 // hi parts of ln(1/frcpa(1+i/256)), i=0...255
310 data8 0x3F60040155D5889D // 0
311 data8 0x3F78121214586B54 // 1
312 data8 0x3F841929F96832EF // 2
313 data8 0x3F8C317384C75F06 // 3
314 data8 0x3F91A6B91AC73386 // 4
315 data8 0x3F95BA9A5D9AC039 // 5
316 data8 0x3F99D2A8074325F3 // 6
317 data8 0x3F9D6B2725979802 // 7
318 data8 0x3FA0C58FA19DFAA9 // 8
319 data8 0x3FA2954C78CBCE1A // 9
320 data8 0x3FA4A94D2DA96C56 // 10
321 data8 0x3FA67C94F2D4BB58 // 11
322 data8 0x3FA85188B630F068 // 12
323 data8 0x3FAA6B8ABE73AF4C // 13
324 data8 0x3FAC441E06F72A9E // 14
325 data8 0x3FAE1E6713606D06 // 15
326 data8 0x3FAFFA6911AB9300 // 16
327 data8 0x3FB0EC139C5DA600 // 17
328 data8 0x3FB1DBD2643D190B // 18
329 data8 0x3FB2CC7284FE5F1C // 19
330 data8 0x3FB3BDF5A7D1EE64 // 20
331 data8 0x3FB4B05D7AA012E0 // 21
332 data8 0x3FB580DB7CEB5701 // 22
333 data8 0x3FB674F089365A79 // 23
334 data8 0x3FB769EF2C6B568D // 24
335 data8 0x3FB85FD927506A47 // 25
336 data8 0x3FB9335E5D594988 // 26
337 data8 0x3FBA2B0220C8E5F4 // 27
338 data8 0x3FBB0004AC1A86AB // 28
339 data8 0x3FBBF968769FCA10 // 29
340 data8 0x3FBCCFEDBFEE13A8 // 30
341 data8 0x3FBDA727638446A2 // 31
342 data8 0x3FBEA3257FE10F79 // 32
343 data8 0x3FBF7BE9FEDBFDE5 // 33
344 data8 0x3FC02AB352FF25F3 // 34
345 data8 0x3FC097CE579D204C // 35
346 data8 0x3FC1178E8227E47B // 36
347 data8 0x3FC185747DBECF33 // 37
348 data8 0x3FC1F3B925F25D41 // 38
349 data8 0x3FC2625D1E6DDF56 // 39
350 data8 0x3FC2D1610C868139 // 40
351 data8 0x3FC340C59741142E // 41
352 data8 0x3FC3B08B6757F2A9 // 42
353 data8 0x3FC40DFB08378003 // 43
354 data8 0x3FC47E74E8CA5F7C // 44
355 data8 0x3FC4EF51F6466DE4 // 45
356 data8 0x3FC56092E02BA516 // 46
357 data8 0x3FC5D23857CD74D4 // 47
358 data8 0x3FC6313A37335D76 // 48
359 data8 0x3FC6A399DABBD383 // 49
360 data8 0x3FC70337DD3CE41A // 50
361 data8 0x3FC77654128F6127 // 51
362 data8 0x3FC7E9D82A0B022D // 52
363 data8 0x3FC84A6B759F512E // 53
364 data8 0x3FC8AB47D5F5A30F // 54
365 data8 0x3FC91FE49096581B // 55
366 data8 0x3FC981634011AA75 // 56
367 data8 0x3FC9F6C407089664 // 57
368 data8 0x3FCA58E729348F43 // 58
369 data8 0x3FCABB55C31693AC // 59
370 data8 0x3FCB1E104919EFD0 // 60
371 data8 0x3FCB94EE93E367CA // 61
372 data8 0x3FCBF851C067555E // 62
373 data8 0x3FCC5C0254BF23A5 // 63
374 data8 0x3FCCC000C9DB3C52 // 64
375 data8 0x3FCD244D99C85673 // 65
376 data8 0x3FCD88E93FB2F450 // 66
377 data8 0x3FCDEDD437EAEF00 // 67
378 data8 0x3FCE530EFFE71012 // 68
379 data8 0x3FCEB89A1648B971 // 69
380 data8 0x3FCF1E75FADF9BDE // 70
381 data8 0x3FCF84A32EAD7C35 // 71
382 data8 0x3FCFEB2233EA07CD // 72
383 data8 0x3FD028F9C7035C1C // 73
384 data8 0x3FD05C8BE0D9635A // 74
385 data8 0x3FD085EB8F8AE797 // 75
386 data8 0x3FD0B9C8E32D1911 // 76
387 data8 0x3FD0EDD060B78080 // 77
388 data8 0x3FD122024CF0063F // 78
389 data8 0x3FD14BE2927AECD4 // 79
390 data8 0x3FD180618EF18ADF // 80
391 data8 0x3FD1B50BBE2FC63B // 81
392 data8 0x3FD1DF4CC7CF242D // 82
393 data8 0x3FD214456D0EB8D4 // 83
394 data8 0x3FD23EC5991EBA49 // 84
395 data8 0x3FD2740D9F870AFB // 85
396 data8 0x3FD29ECDABCDFA03 // 86
397 data8 0x3FD2D46602ADCCEE // 87
398 data8 0x3FD2FF66B04EA9D4 // 88
399 data8 0x3FD335504B355A37 // 89
400 data8 0x3FD360925EC44F5C // 90
401 data8 0x3FD38BF1C3337E74 // 91
402 data8 0x3FD3C25277333183 // 92
403 data8 0x3FD3EDF463C1683E // 93
404 data8 0x3FD419B423D5E8C7 // 94
405 data8 0x3FD44591E0539F48 // 95
406 data8 0x3FD47C9175B6F0AD // 96
407 data8 0x3FD4A8B341552B09 // 97
408 data8 0x3FD4D4F39089019F // 98
409 data8 0x3FD501528DA1F967 // 99
410 data8 0x3FD52DD06347D4F6 // 100
411 data8 0x3FD55A6D3C7B8A89 // 101
412 data8 0x3FD5925D2B112A59 // 102
413 data8 0x3FD5BF406B543DB1 // 103
414 data8 0x3FD5EC433D5C35AD // 104
415 data8 0x3FD61965CDB02C1E // 105
416 data8 0x3FD646A84935B2A1 // 106
417 data8 0x3FD6740ADD31DE94 // 107
418 data8 0x3FD6A18DB74A58C5 // 108
419 data8 0x3FD6CF31058670EC // 109
420 data8 0x3FD6F180E852F0B9 // 110
421 data8 0x3FD71F5D71B894EF // 111
422 data8 0x3FD74D5AEFD66D5C // 112
423 data8 0x3FD77B79922BD37D // 113
424 data8 0x3FD7A9B9889F19E2 // 114
425 data8 0x3FD7D81B037EB6A6 // 115
426 data8 0x3FD8069E33827230 // 116
427 data8 0x3FD82996D3EF8BCA // 117
428 data8 0x3FD85855776DCBFA // 118
429 data8 0x3FD8873658327CCE // 119
430 data8 0x3FD8AA75973AB8CE // 120
431 data8 0x3FD8D992DC8824E4 // 121
432 data8 0x3FD908D2EA7D9511 // 122
433 data8 0x3FD92C59E79C0E56 // 123
434 data8 0x3FD95BD750EE3ED2 // 124
435 data8 0x3FD98B7811A3EE5B // 125
436 data8 0x3FD9AF47F33D406B // 126
437 data8 0x3FD9DF270C1914A7 // 127
438 data8 0x3FDA0325ED14FDA4 // 128
439 data8 0x3FDA33440224FA78 // 129
440 data8 0x3FDA57725E80C382 // 130
441 data8 0x3FDA87D0165DD199 // 131
442 data8 0x3FDAAC2E6C03F895 // 132
443 data8 0x3FDADCCC6FDF6A81 // 133
444 data8 0x3FDB015B3EB1E790 // 134
445 data8 0x3FDB323A3A635948 // 135
446 data8 0x3FDB56FA04462909 // 136
447 data8 0x3FDB881AA659BC93 // 137
448 data8 0x3FDBAD0BEF3DB164 // 138
449 data8 0x3FDBD21297781C2F // 139
450 data8 0x3FDC039236F08818 // 140
451 data8 0x3FDC28CB1E4D32FC // 141
452 data8 0x3FDC4E19B84723C1 // 142
453 data8 0x3FDC7FF9C74554C9 // 143
454 data8 0x3FDCA57B64E9DB05 // 144
455 data8 0x3FDCCB130A5CEBAF // 145
456 data8 0x3FDCF0C0D18F326F // 146
457 data8 0x3FDD232075B5A201 // 147
458 data8 0x3FDD490246DEFA6B // 148
459 data8 0x3FDD6EFA918D25CD // 149
460 data8 0x3FDD9509707AE52F // 150
461 data8 0x3FDDBB2EFE92C554 // 151
462 data8 0x3FDDEE2F3445E4AE // 152
463 data8 0x3FDE148A1A2726CD // 153
464 data8 0x3FDE3AFC0A49FF3F // 154
465 data8 0x3FDE6185206D516D // 155
466 data8 0x3FDE882578823D51 // 156
467 data8 0x3FDEAEDD2EAC990C // 157
468 data8 0x3FDED5AC5F436BE2 // 158
469 data8 0x3FDEFC9326D16AB8 // 159
470 data8 0x3FDF2391A21575FF // 160
471 data8 0x3FDF4AA7EE03192C // 161
472 data8 0x3FDF71D627C30BB0 // 162
473 data8 0x3FDF991C6CB3B379 // 163
474 data8 0x3FDFC07ADA69A90F // 164
475 data8 0x3FDFE7F18EB03D3E // 165
476 data8 0x3FE007C053C5002E // 166
477 data8 0x3FE01B942198A5A0 // 167
478 data8 0x3FE02F74400C64EA // 168
479 data8 0x3FE04360BE7603AC // 169
480 data8 0x3FE05759AC47FE33 // 170
481 data8 0x3FE06B5F1911CF51 // 171
482 data8 0x3FE078BF0533C568 // 172
483 data8 0x3FE08CD9687E7B0E // 173
484 data8 0x3FE0A10074CF9019 // 174
485 data8 0x3FE0B5343A234476 // 175
486 data8 0x3FE0C974C89431CD // 176
487 data8 0x3FE0DDC2305B9886 // 177
488 data8 0x3FE0EB524BAFC918 // 178
489 data8 0x3FE0FFB54213A475 // 179
490 data8 0x3FE114253DA97D9F // 180
491 data8 0x3FE128A24F1D9AFF // 181
492 data8 0x3FE1365252BF0864 // 182
493 data8 0x3FE14AE558B4A92D // 183
494 data8 0x3FE15F85A19C765B // 184
495 data8 0x3FE16D4D38C119FA // 185
496 data8 0x3FE18203C20DD133 // 186
497 data8 0x3FE196C7BC4B1F3A // 187
498 data8 0x3FE1A4A738B7A33C // 188
499 data8 0x3FE1B981C0C9653C // 189
500 data8 0x3FE1CE69E8BB106A // 190
501 data8 0x3FE1DC619DE06944 // 191
502 data8 0x3FE1F160A2AD0DA3 // 192
503 data8 0x3FE2066D7740737E // 193
504 data8 0x3FE2147DBA47A393 // 194
505 data8 0x3FE229A1BC5EBAC3 // 195
506 data8 0x3FE237C1841A502E // 196
507 data8 0x3FE24CFCE6F80D9A // 197
508 data8 0x3FE25B2C55CD5762 // 198
509 data8 0x3FE2707F4D5F7C40 // 199
510 data8 0x3FE285E0842CA383 // 200
511 data8 0x3FE294294708B773 // 201
512 data8 0x3FE2A9A2670AFF0C // 202
513 data8 0x3FE2B7FB2C8D1CC0 // 203
514 data8 0x3FE2C65A6395F5F5 // 204
515 data8 0x3FE2DBF557B0DF42 // 205
516 data8 0x3FE2EA64C3F97654 // 206
517 data8 0x3FE3001823684D73 // 207
518 data8 0x3FE30E97E9A8B5CC // 208
519 data8 0x3FE32463EBDD34E9 // 209
520 data8 0x3FE332F4314AD795 // 210
521 data8 0x3FE348D90E7464CF // 211
522 data8 0x3FE35779F8C43D6D // 212
523 data8 0x3FE36621961A6A99 // 213
524 data8 0x3FE37C299F3C366A // 214
525 data8 0x3FE38AE2171976E7 // 215
526 data8 0x3FE399A157A603E7 // 216
527 data8 0x3FE3AFCCFE77B9D1 // 217
528 data8 0x3FE3BE9D503533B5 // 218
529 data8 0x3FE3CD7480B4A8A2 // 219
530 data8 0x3FE3E3C43918F76C // 220
531 data8 0x3FE3F2ACB27ED6C6 // 221
532 data8 0x3FE4019C2125CA93 // 222
533 data8 0x3FE4181061389722 // 223
534 data8 0x3FE42711518DF545 // 224
535 data8 0x3FE436194E12B6BF // 225
536 data8 0x3FE445285D68EA69 // 226
537 data8 0x3FE45BCC464C893A // 227
538 data8 0x3FE46AED21F117FC // 228
539 data8 0x3FE47A1527E8A2D3 // 229
540 data8 0x3FE489445EFFFCCB // 230
541 data8 0x3FE4A018BCB69835 // 231
542 data8 0x3FE4AF5A0C9D65D7 // 232
543 data8 0x3FE4BEA2A5BDBE87 // 233
544 data8 0x3FE4CDF28F10AC46 // 234
545 data8 0x3FE4DD49CF994058 // 235
546 data8 0x3FE4ECA86E64A683 // 236
547 data8 0x3FE503C43CD8EB68 // 237
548 data8 0x3FE513356667FC57 // 238
549 data8 0x3FE522AE0738A3D7 // 239
550 data8 0x3FE5322E26867857 // 240
551 data8 0x3FE541B5CB979809 // 241
552 data8 0x3FE55144FDBCBD62 // 242
553 data8 0x3FE560DBC45153C6 // 243
554 data8 0x3FE5707A26BB8C66 // 244
555 data8 0x3FE587F60ED5B8FF // 245
556 data8 0x3FE597A7977C8F31 // 246
557 data8 0x3FE5A760D634BB8A // 247
558 data8 0x3FE5B721D295F10E // 248
559 data8 0x3FE5C6EA94431EF9 // 249
560 data8 0x3FE5D6BB22EA86F5 // 250
561 data8 0x3FE5E6938645D38F // 251
562 data8 0x3FE5F673C61A2ED1 // 252
563 data8 0x3FE6065BEA385926 // 253
564 data8 0x3FE6164BFA7CC06B // 254
565 data8 0x3FE62643FECF9742 // 255
566 //
567 // lo parts of ln(1/frcpa(1+i/256)), i=0...255
568 data4 0x20E70672 // 0
569 data4 0x1F60A5D0 // 1
570 data4 0x218EABA0 // 2
571 data4 0x21403104 // 3
572 data4 0x20E9B54E // 4
573 data4 0x21EE1382 // 5
574 data4 0x226014E3 // 6
575 data4 0x2095E5C9 // 7
576 data4 0x228BA9D4 // 8
577 data4 0x22932B86 // 9
578 data4 0x22608A57 // 10
579 data4 0x220209F3 // 11
580 data4 0x212882CC // 12
581 data4 0x220D46E2 // 13
582 data4 0x21FA4C28 // 14
583 data4 0x229E5BD9 // 15
584 data4 0x228C9838 // 16
585 data4 0x2311F954 // 17
586 data4 0x221365DF // 18
587 data4 0x22BD0CB3 // 19
588 data4 0x223D4BB7 // 20
589 data4 0x22A71BBE // 21
590 data4 0x237DB2FA // 22
591 data4 0x23194C9D // 23
592 data4 0x22EC639E // 24
593 data4 0x2367E669 // 25
594 data4 0x232E1D5F // 26
595 data4 0x234A639B // 27
596 data4 0x2365C0E0 // 28
597 data4 0x234646C1 // 29
598 data4 0x220CBF9C // 30
599 data4 0x22A00FD4 // 31
600 data4 0x2306A3F2 // 32
601 data4 0x23745A9B // 33
602 data4 0x2398D756 // 34
603 data4 0x23DD0B6A // 35
604 data4 0x23DE338B // 36
605 data4 0x23A222DF // 37
606 data4 0x223164F8 // 38
607 data4 0x23B4E87B // 39
608 data4 0x23D6CCB8 // 40
609 data4 0x220C2099 // 41
610 data4 0x21B86B67 // 42
611 data4 0x236D14F1 // 43
612 data4 0x225A923F // 44
613 data4 0x22748723 // 45
614 data4 0x22200D13 // 46
615 data4 0x23C296EA // 47
616 data4 0x2302AC38 // 48
617 data4 0x234B1996 // 49
618 data4 0x2385E298 // 50
619 data4 0x23175BE5 // 51
620 data4 0x2193F482 // 52
621 data4 0x23BFEA90 // 53
622 data4 0x23D70A0C // 54
623 data4 0x231CF30A // 55
624 data4 0x235D9E90 // 56
625 data4 0x221AD0CB // 57
626 data4 0x22FAA08B // 58
627 data4 0x23D29A87 // 59
628 data4 0x20C4B2FE // 60
629 data4 0x2381B8B7 // 61
630 data4 0x23F8D9FC // 62
631 data4 0x23EAAE7B // 63
632 data4 0x2329E8AA // 64
633 data4 0x23EC0322 // 65
634 data4 0x2357FDCB // 66
635 data4 0x2392A9AD // 67
636 data4 0x22113B02 // 68
637 data4 0x22DEE901 // 69
638 data4 0x236A6D14 // 70
639 data4 0x2371D33E // 71
640 data4 0x2146F005 // 72
641 data4 0x23230B06 // 73
642 data4 0x22F1C77D // 74
643 data4 0x23A89FA3 // 75
644 data4 0x231D1241 // 76
645 data4 0x244DA96C // 77
646 data4 0x23ECBB7D // 78
647 data4 0x223E42B4 // 79
648 data4 0x23801BC9 // 80
649 data4 0x23573263 // 81
650 data4 0x227C1158 // 82
651 data4 0x237BD749 // 83
652 data4 0x21DDBAE9 // 84
653 data4 0x23401735 // 85
654 data4 0x241D9DEE // 86
655 data4 0x23BC88CB // 87
656 data4 0x2396D5F1 // 88
657 data4 0x23FC89CF // 89
658 data4 0x2414F9A2 // 90
659 data4 0x2474A0F5 // 91
660 data4 0x24354B60 // 92
661 data4 0x23C1EB40 // 93
662 data4 0x2306DD92 // 94
663 data4 0x24353B6B // 95
664 data4 0x23CD1701 // 96
665 data4 0x237C7A1C // 97
666 data4 0x245793AA // 98
667 data4 0x24563695 // 99
668 data4 0x23C51467 // 100
669 data4 0x24476B68 // 101
670 data4 0x212585A9 // 102
671 data4 0x247B8293 // 103
672 data4 0x2446848A // 104
673 data4 0x246A53F8 // 105
674 data4 0x246E496D // 106
675 data4 0x23ED1D36 // 107
676 data4 0x2314C258 // 108
677 data4 0x233244A7 // 109
678 data4 0x245B7AF0 // 110
679 data4 0x24247130 // 111
680 data4 0x22D67B38 // 112
681 data4 0x2449F620 // 113
682 data4 0x23BBC8B8 // 114
683 data4 0x237D3BA0 // 115
684 data4 0x245E8F13 // 116
685 data4 0x2435573F // 117
686 data4 0x242DE666 // 118
687 data4 0x2463BC10 // 119
688 data4 0x2466587D // 120
689 data4 0x2408144B // 121
690 data4 0x2405F0E5 // 122
691 data4 0x22381CFF // 123
692 data4 0x24154F9B // 124
693 data4 0x23A4E96E // 125
694 data4 0x24052967 // 126
695 data4 0x2406963F // 127
696 data4 0x23F7D3CB // 128
697 data4 0x2448AFF4 // 129
698 data4 0x24657A21 // 130
699 data4 0x22FBC230 // 131
700 data4 0x243C8DEA // 132
701 data4 0x225DC4B7 // 133
702 data4 0x23496EBF // 134
703 data4 0x237C2B2B // 135
704 data4 0x23A4A5B1 // 136
705 data4 0x2394E9D1 // 137
706 data4 0x244BC950 // 138
707 data4 0x23C7448F // 139
708 data4 0x2404A1AD // 140
709 data4 0x246511D5 // 141
710 data4 0x24246526 // 142
711 data4 0x23111F57 // 143
712 data4 0x22868951 // 144
713 data4 0x243EB77F // 145
714 data4 0x239F3DFF // 146
715 data4 0x23089666 // 147
716 data4 0x23EBFA6A // 148
717 data4 0x23C51312 // 149
718 data4 0x23E1DD5E // 150
719 data4 0x232C0944 // 151
720 data4 0x246A741F // 152
721 data4 0x2414DF8D // 153
722 data4 0x247B5546 // 154
723 data4 0x2415C980 // 155
724 data4 0x24324ABD // 156
725 data4 0x234EB5E5 // 157
726 data4 0x2465E43E // 158
727 data4 0x242840D1 // 159
728 data4 0x24444057 // 160
729 data4 0x245E56F0 // 161
730 data4 0x21AE30F8 // 162
731 data4 0x23FB3283 // 163
732 data4 0x247A4D07 // 164
733 data4 0x22AE314D // 165
734 data4 0x246B7727 // 166
735 data4 0x24EAD526 // 167
736 data4 0x24B41DC9 // 168
737 data4 0x24EE8062 // 169
738 data4 0x24A0C7C4 // 170
739 data4 0x24E8DA67 // 171
740 data4 0x231120F7 // 172
741 data4 0x24401FFB // 173
742 data4 0x2412DD09 // 174
743 data4 0x248C131A // 175
744 data4 0x24C0A7CE // 176
745 data4 0x243DD4C8 // 177
746 data4 0x24457FEB // 178
747 data4 0x24DEEFBB // 179
748 data4 0x243C70AE // 180
749 data4 0x23E7A6FA // 181
750 data4 0x24C2D311 // 182
751 data4 0x23026255 // 183
752 data4 0x2437C9B9 // 184
753 data4 0x246BA847 // 185
754 data4 0x2420B448 // 186
755 data4 0x24C4CF5A // 187
756 data4 0x242C4981 // 188
757 data4 0x24DE1525 // 189
758 data4 0x24F5CC33 // 190
759 data4 0x235A85DA // 191
760 data4 0x24A0B64F // 192
761 data4 0x244BA0A4 // 193
762 data4 0x24AAF30A // 194
763 data4 0x244C86F9 // 195
764 data4 0x246D5B82 // 196
765 data4 0x24529347 // 197
766 data4 0x240DD008 // 198
767 data4 0x24E98790 // 199
768 data4 0x2489B0CE // 200
769 data4 0x22BC29AC // 201
770 data4 0x23F37C7A // 202
771 data4 0x24987FE8 // 203
772 data4 0x22AFE20B // 204
773 data4 0x24C8D7C2 // 205
774 data4 0x24B28B7D // 206
775 data4 0x23B6B271 // 207
776 data4 0x24C77CB6 // 208
777 data4 0x24EF1DCA // 209
778 data4 0x24A4F0AC // 210
779 data4 0x24CF113E // 211
780 data4 0x2496BBAB // 212
781 data4 0x23C7CC8A // 213
782 data4 0x23AE3961 // 214
783 data4 0x2410A895 // 215
784 data4 0x23CE3114 // 216
785 data4 0x2308247D // 217
786 data4 0x240045E9 // 218
787 data4 0x24974F60 // 219
788 data4 0x242CB39F // 220
789 data4 0x24AB8D69 // 221
790 data4 0x23436788 // 222
791 data4 0x24305E9E // 223
792 data4 0x243E71A9 // 224
793 data4 0x23C2A6B3 // 225
794 data4 0x23FFE6CF // 226
795 data4 0x2322D801 // 227
796 data4 0x24515F21 // 228
797 data4 0x2412A0D6 // 229
798 data4 0x24E60D44 // 230
799 data4 0x240D9251 // 231
800 data4 0x247076E2 // 232
801 data4 0x229B101B // 233
802 data4 0x247B12DE // 234
803 data4 0x244B9127 // 235
804 data4 0x2499EC42 // 236
805 data4 0x21FC3963 // 237
806 data4 0x23E53266 // 238
807 data4 0x24CE102D // 239
808 data4 0x23CC45D2 // 240
809 data4 0x2333171D // 241
810 data4 0x246B3533 // 242
811 data4 0x24931129 // 243
812 data4 0x24405FFA // 244
813 data4 0x24CF464D // 245
814 data4 0x237095CD // 246
815 data4 0x24F86CBD // 247
816 data4 0x24E2D84B // 248
817 data4 0x21ACBB44 // 249
818 data4 0x24F43A8C // 250
819 data4 0x249DB931 // 251
820 data4 0x24A385EF // 252
821 data4 0x238B1279 // 253
822 data4 0x2436213E // 254
823 data4 0x24F18A3B // 255
824 LOCAL_OBJECT_END(log_data)
825
826
827 LOCAL_OBJECT_START(log10_data)
828 // coefficients of polynoimal approximation
829 data8 0x3FC2494104381A8E // A7
830 data8 0xBFC5556D556BBB69 // A6
831 //
832 // two parts of ln(2)/ln(10)
833 data8 0x3FD3441350900000, 0x3DCEF3FDE623E256
834 //
835 data8 0xDE5BD8A937287195,0x3FFD // 1/ln(10)
836 //
837 data8 0x3FC999999988B5E9 // A5
838 data8 0xBFCFFFFFFFF6FFF5 // A4
839 //
840 // Hi parts of ln(1/frcpa(1+i/256))/ln(10), i=0...255
841 data8 0x3F4BD27045BFD024 // 0
842 data8 0x3F64E84E793A474A // 1
843 data8 0x3F7175085AB85FF0 // 2
844 data8 0x3F787CFF9D9147A5 // 3
845 data8 0x3F7EA9D372B89FC8 // 4
846 data8 0x3F82DF9D95DA961C // 5
847 data8 0x3F866DF172D6372B // 6
848 data8 0x3F898D79EF5EEDEF // 7
849 data8 0x3F8D22ADF3F9579C // 8
850 data8 0x3F9024231D30C398 // 9
851 data8 0x3F91F23A98897D49 // 10
852 data8 0x3F93881A7B818F9E // 11
853 data8 0x3F951F6E1E759E35 // 12
854 data8 0x3F96F2BCE7ADC5B4 // 13
855 data8 0x3F988D362CDF359E // 14
856 data8 0x3F9A292BAF010981 // 15
857 data8 0x3F9BC6A03117EB97 // 16
858 data8 0x3F9D65967DE3AB08 // 17
859 data8 0x3F9F061167FC31E7 // 18
860 data8 0x3FA05409E4F7819B // 19
861 data8 0x3FA125D0432EA20D // 20
862 data8 0x3FA1F85D440D299B // 21
863 data8 0x3FA2AD755749617C // 22
864 data8 0x3FA381772A00E603 // 23
865 data8 0x3FA45643E165A70A // 24
866 data8 0x3FA52BDD034475B8 // 25
867 data8 0x3FA5E3966B7E9295 // 26
868 data8 0x3FA6BAAF47C5B244 // 27
869 data8 0x3FA773B3E8C4F3C7 // 28
870 data8 0x3FA84C51EBEE8D15 // 29
871 data8 0x3FA906A6786FC1CA // 30
872 data8 0x3FA9C197ABF00DD6 // 31
873 data8 0x3FAA9C78712191F7 // 32
874 data8 0x3FAB58C09C8D637C // 33
875 data8 0x3FAC15A8BCDD7B7E // 34
876 data8 0x3FACD331E2C2967B // 35
877 data8 0x3FADB11ED766ABF4 // 36
878 data8 0x3FAE70089346A9E6 // 37
879 data8 0x3FAF2F96C6754AED // 38
880 data8 0x3FAFEFCA8D451FD5 // 39
881 data8 0x3FB0585283764177 // 40
882 data8 0x3FB0B913AAC7D3A6 // 41
883 data8 0x3FB11A294F2569F5 // 42
884 data8 0x3FB16B51A2696890 // 43
885 data8 0x3FB1CD03ADACC8BD // 44
886 data8 0x3FB22F0BDD7745F5 // 45
887 data8 0x3FB2916ACA38D1E7 // 46
888 data8 0x3FB2F4210DF7663C // 47
889 data8 0x3FB346A6C3C49065 // 48
890 data8 0x3FB3A9FEBC605409 // 49
891 data8 0x3FB3FD0C10A3AA54 // 50
892 data8 0x3FB46107D3540A81 // 51
893 data8 0x3FB4C55DD16967FE // 52
894 data8 0x3FB51940330C000A // 53
895 data8 0x3FB56D620EE7115E // 54
896 data8 0x3FB5D2ABCF26178D // 55
897 data8 0x3FB6275AA5DEBF81 // 56
898 data8 0x3FB68D4EAF26D7EE // 57
899 data8 0x3FB6E28C5C54A28D // 58
900 data8 0x3FB7380B9665B7C7 // 59
901 data8 0x3FB78DCCC278E85B // 60
902 data8 0x3FB7F50C2CF25579 // 61
903 data8 0x3FB84B5FD5EAEFD7 // 62
904 data8 0x3FB8A1F6BAB2B226 // 63
905 data8 0x3FB8F8D144557BDF // 64
906 data8 0x3FB94FEFDCD61D92 // 65
907 data8 0x3FB9A752EF316149 // 66
908 data8 0x3FB9FEFAE7611EDF // 67
909 data8 0x3FBA56E8325F5C86 // 68
910 data8 0x3FBAAF1B3E297BB3 // 69
911 data8 0x3FBB079479C372AC // 70
912 data8 0x3FBB6054553B12F7 // 71
913 data8 0x3FBBB95B41AB5CE5 // 72
914 data8 0x3FBC12A9B13FE079 // 73
915 data8 0x3FBC6C4017382BEA // 74
916 data8 0x3FBCB41FBA42686C // 75
917 data8 0x3FBD0E38CE73393E // 76
918 data8 0x3FBD689B2193F132 // 77
919 data8 0x3FBDC3472B1D285F // 78
920 data8 0x3FBE0C06300D528B // 79
921 data8 0x3FBE6738190E394B // 80
922 data8 0x3FBEC2B50D208D9A // 81
923 data8 0x3FBF0C1C2B936827 // 82
924 data8 0x3FBF68216C9CC726 // 83
925 data8 0x3FBFB1F6381856F3 // 84
926 data8 0x3FC00742AF4CE5F8 // 85
927 data8 0x3FC02C64906512D2 // 86
928 data8 0x3FC05AF1E63E03B4 // 87
929 data8 0x3FC0804BEA723AA8 // 88
930 data8 0x3FC0AF1FD6711526 // 89
931 data8 0x3FC0D4B2A88059FF // 90
932 data8 0x3FC0FA5EF136A06C // 91
933 data8 0x3FC1299A4FB3E305 // 92
934 data8 0x3FC14F806253C3EC // 93
935 data8 0x3FC175805D1587C1 // 94
936 data8 0x3FC19B9A637CA294 // 95
937 data8 0x3FC1CB5FC26EDE16 // 96
938 data8 0x3FC1F1B4E65F2590 // 97
939 data8 0x3FC218248B5DC3E5 // 98
940 data8 0x3FC23EAED62ADC76 // 99
941 data8 0x3FC26553EBD337BC // 100
942 data8 0x3FC28C13F1B118FF // 101
943 data8 0x3FC2BCAA14381385 // 102
944 data8 0x3FC2E3A740B7800E // 103
945 data8 0x3FC30ABFD8F333B6 // 104
946 data8 0x3FC331F403985096 // 105
947 data8 0x3FC35943E7A6068F // 106
948 data8 0x3FC380AFAC6E7C07 // 107
949 data8 0x3FC3A8377997B9E5 // 108
950 data8 0x3FC3CFDB771C9ADB // 109
951 data8 0x3FC3EDA90D39A5DE // 110
952 data8 0x3FC4157EC09505CC // 111
953 data8 0x3FC43D7113FB04C0 // 112
954 data8 0x3FC4658030AD1CCE // 113
955 data8 0x3FC48DAC404638F5 // 114
956 data8 0x3FC4B5F56CBBB869 // 115
957 data8 0x3FC4DE5BE05E7582 // 116
958 data8 0x3FC4FCBC0776FD85 // 117
959 data8 0x3FC525561E9256EE // 118
960 data8 0x3FC54E0DF3198865 // 119
961 data8 0x3FC56CAB7112BDE2 // 120
962 data8 0x3FC59597BA735B15 // 121
963 data8 0x3FC5BEA23A506FD9 // 122
964 data8 0x3FC5DD7E08DE382E // 123
965 data8 0x3FC606BDD3F92355 // 124
966 data8 0x3FC6301C518A501E // 125
967 data8 0x3FC64F3770618915 // 126
968 data8 0x3FC678CC14C1E2D7 // 127
969 data8 0x3FC6981005ED2947 // 128
970 data8 0x3FC6C1DB5F9BB335 // 129
971 data8 0x3FC6E1488ECD2880 // 130
972 data8 0x3FC70B4B2E7E41B8 // 131
973 data8 0x3FC72AE209146BF8 // 132
974 data8 0x3FC7551C81BD8DCF // 133
975 data8 0x3FC774DD76CC43BD // 134
976 data8 0x3FC79F505DB00E88 // 135
977 data8 0x3FC7BF3BDE099F30 // 136
978 data8 0x3FC7E9E7CAC437F8 // 137
979 data8 0x3FC809FE4902D00D // 138
980 data8 0x3FC82A2757995CBD // 139
981 data8 0x3FC85525C625E098 // 140
982 data8 0x3FC8757A79831887 // 141
983 data8 0x3FC895E2058D8E02 // 142
984 data8 0x3FC8C13437695531 // 143
985 data8 0x3FC8E1C812EF32BE // 144
986 data8 0x3FC9026F112197E8 // 145
987 data8 0x3FC923294888880A // 146
988 data8 0x3FC94EEA4B8334F2 // 147
989 data8 0x3FC96FD1B639FC09 // 148
990 data8 0x3FC990CCA66229AB // 149
991 data8 0x3FC9B1DB33334842 // 150
992 data8 0x3FC9D2FD740E6606 // 151
993 data8 0x3FC9FF49EEDCB553 // 152
994 data8 0x3FCA209A84FBCFF7 // 153
995 data8 0x3FCA41FF1E43F02B // 154
996 data8 0x3FCA6377D2CE9377 // 155
997 data8 0x3FCA8504BAE0D9F5 // 156
998 data8 0x3FCAA6A5EEEBEFE2 // 157
999 data8 0x3FCAC85B878D7878 // 158
1000 data8 0x3FCAEA259D8FFA0B // 159
1001 data8 0x3FCB0C0449EB4B6A // 160
1002 data8 0x3FCB2DF7A5C50299 // 161
1003 data8 0x3FCB4FFFCA70E4D1 // 162
1004 data8 0x3FCB721CD17157E2 // 163
1005 data8 0x3FCB944ED477D4EC // 164
1006 data8 0x3FCBB695ED655C7C // 165
1007 data8 0x3FCBD8F2364AEC0F // 166
1008 data8 0x3FCBFB63C969F4FF // 167
1009 data8 0x3FCC1DEAC134D4E9 // 168
1010 data8 0x3FCC4087384F4F80 // 169
1011 data8 0x3FCC6339498F09E1 // 170
1012 data8 0x3FCC86010FFC076B // 171
1013 data8 0x3FCC9D3D065C5B41 // 172
1014 data8 0x3FCCC029375BA079 // 173
1015 data8 0x3FCCE32B66978BA4 // 174
1016 data8 0x3FCD0643AFD51404 // 175
1017 data8 0x3FCD29722F0DEA45 // 176
1018 data8 0x3FCD4CB70070FE43 // 177
1019 data8 0x3FCD6446AB3F8C95 // 178
1020 data8 0x3FCD87B0EF71DB44 // 179
1021 data8 0x3FCDAB31D1FE99A6 // 180
1022 data8 0x3FCDCEC96FDC888E // 181
1023 data8 0x3FCDE69088763579 // 182
1024 data8 0x3FCE0A4E4A25C1FF // 183
1025 data8 0x3FCE2E2315755E32 // 184
1026 data8 0x3FCE461322D1648A // 185
1027 data8 0x3FCE6A0E95C7787B // 186
1028 data8 0x3FCE8E216243DD60 // 187
1029 data8 0x3FCEA63AF26E007C // 188
1030 data8 0x3FCECA74ED15E0B7 // 189
1031 data8 0x3FCEEEC692CCD259 // 190
1032 data8 0x3FCF070A36B8D9C0 // 191
1033 data8 0x3FCF2B8393E34A2D // 192
1034 data8 0x3FCF5014EF538A5A // 193
1035 data8 0x3FCF68833AF1B17F // 194
1036 data8 0x3FCF8D3CD9F3F04E // 195
1037 data8 0x3FCFA5C61ADD93E9 // 196
1038 data8 0x3FCFCAA8567EBA79 // 197
1039 data8 0x3FCFE34CC8743DD8 // 198
1040 data8 0x3FD0042BFD74F519 // 199
1041 data8 0x3FD016BDF6A18017 // 200
1042 data8 0x3FD023262F907322 // 201
1043 data8 0x3FD035CCED8D32A1 // 202
1044 data8 0x3FD042430E869FFB // 203
1045 data8 0x3FD04EBEC842B2DF // 204
1046 data8 0x3FD06182E84FD4AB // 205
1047 data8 0x3FD06E0CB609D383 // 206
1048 data8 0x3FD080E60BEC8F12 // 207
1049 data8 0x3FD08D7E0D894735 // 208
1050 data8 0x3FD0A06CC96A2055 // 209
1051 data8 0x3FD0AD131F3B3C55 // 210
1052 data8 0x3FD0C01771E775FB // 211
1053 data8 0x3FD0CCCC3CAD6F4B // 212
1054 data8 0x3FD0D986D91A34A8 // 213
1055 data8 0x3FD0ECA9B8861A2D // 214
1056 data8 0x3FD0F972F87FF3D5 // 215
1057 data8 0x3FD106421CF0E5F7 // 216
1058 data8 0x3FD11983EBE28A9C // 217
1059 data8 0x3FD12661E35B7859 // 218
1060 data8 0x3FD13345D2779D3B // 219
1061 data8 0x3FD146A6F597283A // 220
1062 data8 0x3FD15399E81EA83D // 221
1063 data8 0x3FD16092E5D3A9A6 // 222
1064 data8 0x3FD17413C3B7AB5D // 223
1065 data8 0x3FD1811BF629D6FA // 224
1066 data8 0x3FD18E2A47B46685 // 225
1067 data8 0x3FD19B3EBE1A4418 // 226
1068 data8 0x3FD1AEE9017CB450 // 227
1069 data8 0x3FD1BC0CED7134E1 // 228
1070 data8 0x3FD1C93712ABC7FF // 229
1071 data8 0x3FD1D66777147D3E // 230
1072 data8 0x3FD1EA3BD1286E1C // 231
1073 data8 0x3FD1F77BED932C4C // 232
1074 data8 0x3FD204C25E1B031F // 233
1075 data8 0x3FD2120F28CE69B1 // 234
1076 data8 0x3FD21F6253C48D00 // 235
1077 data8 0x3FD22CBBE51D60A9 // 236
1078 data8 0x3FD240CE4C975444 // 237
1079 data8 0x3FD24E37F8ECDAE7 // 238
1080 data8 0x3FD25BA8215AF7FC // 239
1081 data8 0x3FD2691ECC29F042 // 240
1082 data8 0x3FD2769BFFAB2DFF // 241
1083 data8 0x3FD2841FC23952C9 // 242
1084 data8 0x3FD291AA1A384978 // 243
1085 data8 0x3FD29F3B0E15584A // 244
1086 data8 0x3FD2B3A0EE479DF7 // 245
1087 data8 0x3FD2C142842C09E5 // 246
1088 data8 0x3FD2CEEACCB7BD6C // 247
1089 data8 0x3FD2DC99CE82FF20 // 248
1090 data8 0x3FD2EA4F902FD7D9 // 249
1091 data8 0x3FD2F80C186A25FC // 250
1092 data8 0x3FD305CF6DE7B0F6 // 251
1093 data8 0x3FD3139997683CE7 // 252
1094 data8 0x3FD3216A9BB59E7C // 253
1095 data8 0x3FD32F4281A3CEFE // 254
1096 data8 0x3FD33D2150110091 // 255
1097 //
1098 // Lo parts of ln(1/frcpa(1+i/256))/ln(10), i=0...255
1099 data4 0x1FB0EB5A // 0
1100 data4 0x206E5EE3 // 1
1101 data4 0x208F3609 // 2
1102 data4 0x2070EB03 // 3
1103 data4 0x1F314BAE // 4
1104 data4 0x217A889D // 5
1105 data4 0x21E63650 // 6
1106 data4 0x21C2F4A3 // 7
1107 data4 0x2192A10C // 8
1108 data4 0x1F84B73E // 9
1109 data4 0x2243FBCA // 10
1110 data4 0x21BD9C51 // 11
1111 data4 0x213C542B // 12
1112 data4 0x21047386 // 13
1113 data4 0x21217D8F // 14
1114 data4 0x226791B7 // 15
1115 data4 0x204CCE66 // 16
1116 data4 0x2234CE9F // 17
1117 data4 0x220675E2 // 18
1118 data4 0x22B8E5BA // 19
1119 data4 0x22C12D14 // 20
1120 data4 0x211D41F0 // 21
1121 data4 0x228507F3 // 22
1122 data4 0x22F7274B // 23
1123 data4 0x22A7FDD1 // 24
1124 data4 0x2244A06E // 25
1125 data4 0x215DCE69 // 26
1126 data4 0x22F5C961 // 27
1127 data4 0x22EBEF29 // 28
1128 data4 0x222A2CB6 // 29
1129 data4 0x22B9FE00 // 30
1130 data4 0x22E79EB7 // 31
1131 data4 0x222F9607 // 32
1132 data4 0x2189D87F // 33
1133 data4 0x2236DB45 // 34
1134 data4 0x22ED77FB // 35
1135 data4 0x21CB70F0 // 36
1136 data4 0x21B8ACE8 // 37
1137 data4 0x22EC58C1 // 38
1138 data4 0x22CFCC1C // 39
1139 data4 0x2343E77A // 40
1140 data4 0x237FBC7F // 41
1141 data4 0x230D472E // 42
1142 data4 0x234686FB // 43
1143 data4 0x23770425 // 44
1144 data4 0x223977EC // 45
1145 data4 0x2345800A // 46
1146 data4 0x237BC351 // 47
1147 data4 0x23191502 // 48
1148 data4 0x232BAC12 // 49
1149 data4 0x22692421 // 50
1150 data4 0x234D409D // 51
1151 data4 0x22EC3214 // 52
1152 data4 0x2376C916 // 53
1153 data4 0x22B00DD1 // 54
1154 data4 0x2309D910 // 55
1155 data4 0x22F925FD // 56
1156 data4 0x22A63A7B // 57
1157 data4 0x2106264A // 58
1158 data4 0x234227F9 // 59
1159 data4 0x1ECB1978 // 60
1160 data4 0x23460A62 // 61
1161 data4 0x232ED4B1 // 62
1162 data4 0x226DDC38 // 63
1163 data4 0x1F101A73 // 64
1164 data4 0x21B1F82B // 65
1165 data4 0x22752F19 // 66
1166 data4 0x2320BC15 // 67
1167 data4 0x236EEC5E // 68
1168 data4 0x23404D3E // 69
1169 data4 0x2304C517 // 70
1170 data4 0x22F7441A // 71
1171 data4 0x230D3D7A // 72
1172 data4 0x2264A9DF // 73
1173 data4 0x22410CC8 // 74
1174 data4 0x2342CCCB // 75
1175 data4 0x23560BD4 // 76
1176 data4 0x237BBFFE // 77
1177 data4 0x2373A206 // 78
1178 data4 0x22C871B9 // 79
1179 data4 0x2354B70C // 80
1180 data4 0x232EDB33 // 81
1181 data4 0x235DB680 // 82
1182 data4 0x230EF422 // 83
1183 data4 0x235316CA // 84
1184 data4 0x22EEEE8B // 85
1185 data4 0x2375C88C // 86
1186 data4 0x235ABD21 // 87
1187 data4 0x23A0D232 // 88
1188 data4 0x23F5FFB5 // 89
1189 data4 0x23D3CEC8 // 90
1190 data4 0x22A92204 // 91
1191 data4 0x238C64DF // 92
1192 data4 0x23B82896 // 93
1193 data4 0x22D633B8 // 94
1194 data4 0x23861E93 // 95
1195 data4 0x23CB594B // 96
1196 data4 0x2330387E // 97
1197 data4 0x21CD4702 // 98
1198 data4 0x2284C505 // 99
1199 data4 0x23D6995C // 100
1200 data4 0x23F6C807 // 101
1201 data4 0x239CEF5C // 102
1202 data4 0x239442B0 // 103
1203 data4 0x22B35EE5 // 104
1204 data4 0x2391E9A4 // 105
1205 data4 0x23A390F5 // 106
1206 data4 0x2349AC9C // 107
1207 data4 0x23FA5535 // 108
1208 data4 0x21E3A46A // 109
1209 data4 0x23B44ABA // 110
1210 data4 0x23CEA8E0 // 111
1211 data4 0x23F647DC // 112
1212 data4 0x2390D1A8 // 113
1213 data4 0x23D0CFA2 // 114
1214 data4 0x236E0872 // 115
1215 data4 0x23B88B91 // 116
1216 data4 0x2283C359 // 117
1217 data4 0x232F647F // 118
1218 data4 0x23122CD7 // 119
1219 data4 0x232CF564 // 120
1220 data4 0x232630FD // 121
1221 data4 0x23BEE1C8 // 122
1222 data4 0x23B2BD30 // 123
1223 data4 0x2301F1C0 // 124
1224 data4 0x23CE4D67 // 125
1225 data4 0x23A353C9 // 126
1226 data4 0x238086E8 // 127
1227 data4 0x22D0D29E // 128
1228 data4 0x23A3B3C8 // 129
1229 data4 0x23F69F4B // 130
1230 data4 0x23EA3C21 // 131
1231 data4 0x23951C88 // 132
1232 data4 0x2372AFFC // 133
1233 data4 0x23A6D1A8 // 134
1234 data4 0x22BBBAF4 // 135
1235 data4 0x227FA3DD // 136
1236 data4 0x23804D9B // 137
1237 data4 0x232D771F // 138
1238 data4 0x239CB57B // 139
1239 data4 0x2303CF34 // 140
1240 data4 0x22218C2A // 141
1241 data4 0x23991BEE // 142
1242 data4 0x23EB3596 // 143
1243 data4 0x230487FA // 144
1244 data4 0x2135DF4C // 145
1245 data4 0x2380FD2D // 146
1246 data4 0x23EB75E9 // 147
1247 data4 0x211C62C8 // 148
1248 data4 0x23F518F1 // 149
1249 data4 0x23FEF882 // 150
1250 data4 0x239097C7 // 151
1251 data4 0x223E2BDA // 152
1252 data4 0x23988F89 // 153
1253 data4 0x22E4A4AD // 154
1254 data4 0x23F03D9C // 155
1255 data4 0x23F5018F // 156
1256 data4 0x23E1E250 // 157
1257 data4 0x23FD3D90 // 158
1258 data4 0x22DEE2FF // 159
1259 data4 0x238342AB // 160
1260 data4 0x22E6736F // 161
1261 data4 0x233AFC28 // 162
1262 data4 0x2395F661 // 163
1263 data4 0x23D8B991 // 164
1264 data4 0x23CD58D5 // 165
1265 data4 0x21941FD6 // 166
1266 data4 0x23352915 // 167
1267 data4 0x235D09EE // 168
1268 data4 0x22DC7EF9 // 169
1269 data4 0x238BC9F3 // 170
1270 data4 0x2397DF8F // 171
1271 data4 0x2380A7BB // 172
1272 data4 0x23EFF48C // 173
1273 data4 0x21E67408 // 174
1274 data4 0x236420F7 // 175
1275 data4 0x22C8DFB5 // 176
1276 data4 0x239B5D35 // 177
1277 data4 0x23BDC09D // 178
1278 data4 0x239E822C // 179
1279 data4 0x23984F0A // 180
1280 data4 0x23EF2119 // 181
1281 data4 0x23F738B8 // 182
1282 data4 0x23B66187 // 183
1283 data4 0x23B06AD7 // 184
1284 data4 0x2369140F // 185
1285 data4 0x218DACE6 // 186
1286 data4 0x21DF23F1 // 187
1287 data4 0x235D8B34 // 188
1288 data4 0x23460333 // 189
1289 data4 0x23F11D62 // 190
1290 data4 0x23C37147 // 191
1291 data4 0x22B2AE2A // 192
1292 data4 0x23949211 // 193
1293 data4 0x23B69799 // 194
1294 data4 0x23DBEC75 // 195
1295 data4 0x229A6FB3 // 196
1296 data4 0x23FC6C60 // 197
1297 data4 0x22D01FFC // 198
1298 data4 0x235985F0 // 199
1299 data4 0x23F7ECA5 // 200
1300 data4 0x23F924D3 // 201
1301 data4 0x2381B92F // 202
1302 data4 0x243A0FBE // 203
1303 data4 0x24712D72 // 204
1304 data4 0x24594E2F // 205
1305 data4 0x220CD12A // 206
1306 data4 0x23D87FB0 // 207
1307 data4 0x2338288A // 208
1308 data4 0x242BB2CC // 209
1309 data4 0x220F6265 // 210
1310 data4 0x23BB7FE3 // 211
1311 data4 0x2301C0A2 // 212
1312 data4 0x246709AB // 213
1313 data4 0x23A619E2 // 214
1314 data4 0x24030E3B // 215
1315 data4 0x233C36CC // 216
1316 data4 0x241AAB77 // 217
1317 data4 0x243D41A3 // 218
1318 data4 0x23834A60 // 219
1319 data4 0x236AC7BF // 220
1320 data4 0x23B6D597 // 221
1321 data4 0x210E9474 // 222
1322 data4 0x242156E6 // 223
1323 data4 0x243A1D68 // 224
1324 data4 0x2472187C // 225
1325 data4 0x23834E86 // 226
1326 data4 0x23CA0807 // 227
1327 data4 0x24745887 // 228
1328 data4 0x23E2B0E1 // 229
1329 data4 0x2421EB67 // 230
1330 data4 0x23DCC64E // 231
1331 data4 0x22DF71D1 // 232
1332 data4 0x238D5ECA // 233
1333 data4 0x23CDE86F // 234
1334 data4 0x24131F45 // 235
1335 data4 0x240FE4E2 // 236
1336 data4 0x2317731A // 237
1337 data4 0x24015C76 // 238
1338 data4 0x2301A4E8 // 239
1339 data4 0x23E52A6D // 240
1340 data4 0x247D8A0D // 241
1341 data4 0x23DFEEBA // 242
1342 data4 0x22139FEC // 243
1343 data4 0x2454A112 // 244
1344 data4 0x23C21E28 // 245
1345 data4 0x2460D813 // 246
1346 data4 0x24258924 // 247
1347 data4 0x2425680F // 248
1348 data4 0x24194D1E // 249
1349 data4 0x24242C2F // 250
1350 data4 0x243DDE5E // 251
1351 data4 0x23DEB388 // 252
1352 data4 0x23E0E6EB // 253
1353 data4 0x24393E74 // 254
1354 data4 0x241B1863 // 255
1355 LOCAL_OBJECT_END(log10_data)
1356
1357
1358
1359 // Code
1360 //==============================================================
1361
1362 // log   has p13 true, p14 false
1363 // log10 has p14 true, p13 false
1364
1365 .section .text
1366 GLOBAL_IEEE754_ENTRY(log10)
1367 { .mfi
1368       getf.exp      GR_Exp = f8 // if x is unorm then must recompute
1369       frcpa.s1      FR_RcpX,p0 = f1,f8
1370       mov           GR_05 = 0xFFFE // biased exponent of A2=0.5
1371 }
1372 { .mlx
1373       addl          GR_ad_1 = @ltoff(log10_data),gp
1374       movl          GR_A3 = 0x3fd5555555555557 // double precision memory
1375                                                // representation of A3
1376 };;
1377
1378 { .mfi
1379       getf.sig      GR_Sig = f8 // get significand to calculate index
1380       fclass.m      p8,p0 = f8,9 // is x positive unorm?
1381       mov           GR_xorg = 0x3fefe // double precision memory msb of 255/256
1382 }
1383 { .mib
1384       ld8           GR_ad_1 = [GR_ad_1]
1385       cmp.eq        p14,p13 = r0,r0 // set p14 to 1 for log10
1386       br.cond.sptk  log_log10_common
1387 };;
1388 GLOBAL_IEEE754_END(log10)
1389
1390
1391 GLOBAL_IEEE754_ENTRY(log)
1392 { .mfi
1393       getf.exp      GR_Exp = f8 // if x is unorm then must recompute
1394       frcpa.s1      FR_RcpX,p0 = f1,f8
1395       mov           GR_05 = 0xfffe
1396 }
1397 { .mlx
1398       addl          GR_ad_1 = @ltoff(log_data),gp
1399       movl          GR_A3 = 0x3fd5555555555557 // double precision memory
1400                                                // representation of A3
1401 };;
1402
1403 { .mfi
1404       getf.sig      GR_Sig = f8 // get significand to calculate index
1405       fclass.m      p8,p0 = f8,9 // is x positive unorm?
1406       mov           GR_xorg = 0x3fefe // double precision memory msb of 255/256
1407 }
1408 { .mfi
1409       ld8           GR_ad_1 = [GR_ad_1]
1410       nop.f         0
1411       cmp.eq        p13,p14 = r0,r0 // set p13 to 1 for log
1412 };;
1413
1414 log_log10_common:
1415 { .mfi
1416       getf.d        GR_x = f8 // double precision memory representation of x
1417       fclass.m      p9,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
1418       dep.z         GR_dx = 3, 44, 2 // Create 0x0000300000000000
1419                                      // Difference between double precision
1420                                      // memory representations of 257/256 and
1421                                      // 255/256
1422 }
1423 { .mfi
1424       setf.exp      FR_A2 = GR_05 // create A2
1425       fnorm.s1      FR_NormX = f8
1426       mov           GR_bias = 0xffff
1427 };;
1428   
1429 { .mfi
1430       setf.d        FR_A3 = GR_A3 // create A3
1431       fcmp.eq.s1    p12,p0 = f1,f8 // is x equal to 1.0?
1432       dep.z         GR_xorg = GR_xorg, 44, 19 // 0x3fefe00000000000 
1433                                               // double precision memory
1434                                               // representation of 255/256
1435 }
1436 { .mib
1437       add           GR_ad_2 = 0x30,GR_ad_1 // address of A5,A4
1438       add           GR_ad_3 = 0x840,GR_ad_1 // address of ln(1/frcpa) lo parts
1439 (p8)  br.cond.spnt  log_positive_unorms
1440 };;
1441
1442 log_core:
1443 { .mfi
1444       ldfpd         FR_A7,FR_A6 = [GR_ad_1],16
1445       fclass.m      p10,p0 = f8,0x3A // is x < 0?
1446       sub           GR_Nm1 = GR_Exp,GR_05 // unbiased_exponent_of_x - 1
1447 }
1448 { .mfi
1449       ldfpd         FR_A5,FR_A4 = [GR_ad_2],16
1450 (p9)  fma.d.s0      f8 = f8,f1,f0 // set V-flag
1451       sub           GR_N = GR_Exp,GR_bias // unbiased_exponent_of_x
1452 };;
1453
1454 { .mfi
1455       setf.sig      FR_N = GR_N // copy unbiased exponent of x to significand
1456       fms.s1        FR_r = FR_RcpX,f8,f1 // range reduction for |x-1|>=1/256
1457       extr.u        GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
1458 }
1459 { .mib
1460       sub           GR_x = GR_x, GR_xorg // get diff between x and 255/256
1461       cmp.gtu       p6, p7 = 2, GR_Nm1 // p6 true if 0.5 <= x < 2
1462 (p9)  br.ret.spnt   b0 // exit for NaN, NaT and +Inf
1463 };;
1464
1465 { .mfi
1466       ldfpd         FR_Ln2hi,FR_Ln2lo = [GR_ad_1],16
1467       fclass.m      p11,p0 = f8,0x07 // is x = 0?
1468       shladd        GR_ad_3 = GR_Ind,2,GR_ad_3 // address of Tlo
1469 }
1470 { .mib
1471       shladd        GR_ad_2 = GR_Ind,3,GR_ad_2 // address of Thi
1472 (p6)  cmp.leu       p6, p7 = GR_x, GR_dx       // 255/256 <= x <= 257/256
1473 (p10) br.cond.spnt  log_negatives // jump if x is negative
1474 };;
1475
1476 // p6 is true if |x-1| < 1/256
1477 // p7 is true if |x-1| >= 1/256
1478 { .mfi
1479       ldfd          FR_Thi = [GR_ad_2]
1480 (p6)  fms.s1        FR_r = f8,f1,f1 // range reduction for |x-1|<1/256
1481       nop.i         0
1482 };;
1483
1484 { .mmi
1485 (p7)  ldfs          FR_Tlo = [GR_ad_3]
1486       nop.m         0
1487       nop.i         0
1488 }
1489 { .mfb
1490       nop.m         0
1491 (p12) fma.d.s0      f8 = f0,f0,f0
1492 (p12) br.ret.spnt   b0 // exit for +1.0
1493 };;
1494
1495 .pred.rel "mutex",p6,p7
1496 { .mfi
1497 (p6)  mov           GR_NearOne = 1
1498       fms.s1        FR_A32 = FR_A3,FR_r,FR_A2 // A3*r-A2
1499 (p7)  mov           GR_NearOne = 0
1500 }
1501 { .mfb
1502       ldfe          FR_InvLn10 = [GR_ad_1],16
1503       fma.s1        FR_r2 = FR_r,FR_r,f0 // r^2
1504 (p11) br.cond.spnt  log_zeroes // jump if x is zero
1505 };;
1506
1507 { .mfi
1508       nop.m         0
1509       fma.s1        FR_A6 = FR_A7,FR_r,FR_A6 // A7*r+A6
1510       nop.i         0
1511 }
1512 { .mfi
1513 (p7)  cmp.eq.unc    p9,p0 = r0,r0  // set p9 if |x-1| > 1/256
1514       fma.s1        FR_A4 = FR_A5,FR_r,FR_A4 // A5*r+A4
1515 (p14) cmp.eq.unc    p8,p0 = 1,GR_NearOne // set p8 to 1 if it's log10
1516                                          // and argument near 1.0
1517 };;
1518
1519 { .mfi
1520 (p6)  getf.exp      GR_rexp = FR_r  // Get signexp of x-1
1521 (p7)  fcvt.xf       FR_N = FR_N
1522 (p8)  cmp.eq        p9,p6 = r0,r0        // Also set p9 and clear p6 if log10 
1523                                          // and arg near 1
1524 };;
1525
1526 { .mfi
1527       nop.m         0
1528       fma.s1        FR_r4 = FR_r2,FR_r2,f0 // r^4
1529       nop.i         0
1530 }
1531 { .mfi
1532       nop.m         0
1533 (p8)  fma.s1        FR_NxLn2pT = f0,f0,f0  // Clear NxLn2pT if log10 near 1
1534       nop.i         0
1535 };;
1536
1537 { .mfi
1538       nop.m         0
1539       // (A3*r+A2)*r^2+r
1540       fma.s1        FR_A321 = FR_A32,FR_r2,FR_r
1541       mov           GR_mask = 0x1ffff
1542 }
1543 { .mfi
1544       nop.m         0
1545       // (A7*r+A6)*r^2+(A5*r+A4)
1546       fma.s1        FR_A4 = FR_A6,FR_r2,FR_A4
1547       nop.i         0
1548 };;
1549
1550 { .mfi
1551 (p6)  and           GR_rexp = GR_rexp, GR_mask
1552       // N*Ln2hi+Thi
1553 (p7)  fma.s1        FR_NxLn2hipThi = FR_N,FR_Ln2hi,FR_Thi
1554       nop.i         0
1555 }
1556 { .mfi
1557       nop.m         0
1558       // N*Ln2lo+Tlo
1559 (p7)  fma.s1        FR_NxLn2lopTlo = FR_N,FR_Ln2lo,FR_Tlo
1560       nop.i         0
1561 };;
1562
1563 { .mfi
1564 (p6)  sub           GR_rexp = GR_rexp, GR_bias // unbiased exponent of x-1
1565 (p9)  fma.s1        f8 = FR_A4,FR_r4,FR_A321 // P(r) if |x-1| >= 1/256 or
1566                                              // log10 and |x-1| < 1/256
1567       nop.i         0
1568 }
1569 { .mfi
1570       nop.m         0
1571       // (N*Ln2hi+Thi) + (N*Ln2lo+Tlo)
1572 (p7)  fma.s1        FR_NxLn2pT = FR_NxLn2hipThi,f1,FR_NxLn2lopTlo
1573       nop.i         0
1574 };;
1575
1576 { .mfi
1577 (p6)  cmp.gt.unc    p10, p6 = -40, GR_rexp // Test |x-1| < 2^-40
1578       nop.f         0
1579       nop.i         0
1580 };;
1581
1582 { .mfi
1583       nop.m         0
1584 (p10) fma.d.s0      f8 = FR_A32,FR_r2,FR_r // log(x) if |x-1| < 2^-40
1585       nop.i         0
1586 };;
1587
1588 .pred.rel "mutex",p6,p9
1589 { .mfi
1590       nop.m         0
1591 (p6)  fma.d.s0      f8 = FR_A4,FR_r4,FR_A321 // log(x) if 2^-40 <= |x-1| < 1/256
1592       nop.i         0
1593 }
1594 { .mfb
1595       nop.m         0
1596 (p9)  fma.d.s0      f8 = f8,FR_InvLn10,FR_NxLn2pT // result if |x-1| >= 1/256
1597                                                   // or log10 and |x-1| < 1/256
1598       br.ret.sptk   b0
1599 };;
1600
1601 .align 32
1602 log_positive_unorms:
1603 { .mmf
1604       getf.exp      GR_Exp = FR_NormX // recompute biased exponent
1605       getf.d        GR_x = FR_NormX   // recompute double precision x
1606       fcmp.eq.s1    p12,p0 = f1,FR_NormX // is x equal to 1.0?
1607 };;
1608
1609 { .mfb
1610       getf.sig      GR_Sig = FR_NormX // recompute significand
1611       fcmp.eq.s0    p15, p0 = f8, f0  // set denormal flag
1612       br.cond.sptk  log_core
1613 };;
1614
1615 .align 32
1616 log_zeroes:
1617 { .mfi
1618       nop.m         0
1619       fmerge.s      FR_X = f8,f8 // keep input argument for subsequent
1620                                  // call of __libm_error_support#
1621       nop.i         0
1622 }
1623 { .mfi
1624       nop.m         0
1625       fms.s1        FR_tmp = f0,f0,f1 // -1.0
1626       nop.i         0
1627 };;
1628
1629 .pred.rel "mutex",p13,p14
1630 { .mfi
1631 (p13) mov           GR_TAG = 2 // set libm error in case of log
1632       frcpa.s0      f8,p0 = FR_tmp,f0 // log(+/-0) should be equal to -INF.
1633                                       // We can get it using frcpa because it
1634                                       // sets result to the IEEE-754 mandated
1635                                       // quotient of FR_tmp/f0.
1636                                       // As far as FR_tmp is -1 it'll be -INF
1637       nop.i         0
1638 }
1639 { .mib
1640 (p14) mov           GR_TAG = 8 // set libm error in case of log10
1641       nop.i         0
1642       br.cond.sptk  log_libm_err
1643 };;
1644
1645 .align 32
1646 log_negatives:
1647 { .mfi
1648       nop.m         0
1649       fmerge.s      FR_X = f8,f8
1650       nop.i         0
1651 };;
1652
1653 .pred.rel "mutex",p13,p14
1654 { .mfi
1655 (p13) mov           GR_TAG = 3 // set libm error in case of log
1656       frcpa.s0      f8,p0 = f0,f0 // log(negatives) should be equal to NaN.
1657                                   // We can get it using frcpa because it
1658                                   // sets result to the IEEE-754 mandated
1659                                   // quotient of f0/f0 i.e. NaN.
1660 (p14) mov           GR_TAG = 9 // set libm error in case of log10
1661 };;
1662
1663 .align 32
1664 log_libm_err:
1665 { .mmi
1666       alloc         r32 = ar.pfs,1,4,4,0
1667       mov           GR_Parameter_TAG = GR_TAG
1668       nop.i         0
1669 };;
1670 GLOBAL_IEEE754_END(log)
1671
1672
1673 LOCAL_LIBM_ENTRY(__libm_error_region)
1674 .prologue
1675 { .mfi
1676         add   GR_Parameter_Y = -32,sp         // Parameter 2 value
1677         nop.f 0
1678 .save   ar.pfs,GR_SAVE_PFS
1679         mov  GR_SAVE_PFS = ar.pfs             // Save ar.pfs
1680 }
1681 { .mfi
1682 .fframe 64
1683         add sp = -64,sp                       // Create new stack
1684         nop.f 0
1685         mov GR_SAVE_GP = gp                   // Save gp
1686 };;
1687
1688 { .mmi
1689         stfd [GR_Parameter_Y] = FR_Y,16       // STORE Parameter 2 on stack
1690         add GR_Parameter_X = 16,sp            // Parameter 1 address
1691 .save   b0, GR_SAVE_B0
1692         mov GR_SAVE_B0 = b0                   // Save b0
1693 };;
1694
1695 .body
1696 { .mib
1697         stfd [GR_Parameter_X] = FR_X          // STORE Parameter 1 on stack
1698         add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
1699         nop.b 0
1700 }
1701 { .mib
1702         stfd [GR_Parameter_Y] = FR_RESULT     // STORE Parameter 3 on stack
1703         add   GR_Parameter_Y = -16,GR_Parameter_Y
1704         br.call.sptk b0=__libm_error_support# // Call error handling function
1705 };;
1706
1707 { .mmi
1708         add   GR_Parameter_RESULT = 48,sp
1709         nop.m 0
1710         nop.i 0
1711 };;
1712
1713 { .mmi
1714         ldfd  f8 = [GR_Parameter_RESULT]      // Get return result off stack
1715 .restore sp
1716         add   sp = 64,sp                      // Restore stack pointer
1717         mov   b0 = GR_SAVE_B0                 // Restore return address
1718 };;
1719
1720 { .mib
1721         mov   gp = GR_SAVE_GP                 // Restore gp
1722         mov   ar.pfs = GR_SAVE_PFS            // Restore ar.pfs
1723         br.ret.sptk     b0                    // Return
1724 };;
1725 LOCAL_LIBM_END(__libm_error_region)
1726
1727 .type   __libm_error_support#,@function
1728 .global __libm_error_support#
1729