Documentation of LinuxThreads in texinfo.
authordrepper <drepper>
Mon, 13 Jul 1998 12:13:27 +0000 (12:13 +0000)
committerdrepper <drepper>
Mon, 13 Jul 1998 12:13:27 +0000 (12:13 +0000)
linuxthreads/linuxthreads.texi [new file with mode: 0644]

diff --git a/linuxthreads/linuxthreads.texi b/linuxthreads/linuxthreads.texi
new file mode 100644 (file)
index 0000000..dc1b146
--- /dev/null
@@ -0,0 +1,1427 @@
+@node POSIX Threads, , Top, Top
+@chapter POSIX Threads
+@c %MENU% The standard threads library
+
+@c This chapter needs more work bigtime. -zw
+
+This chapter describes the pthreads (POSIX threads) library.  This
+library provides support functions for multithreaded programs: thread
+primitives, synchronization objects, and so forth.  It also implements
+POSIX 1003.1b semaphores (not to be confused with System V semaphores).
+
+The threads operations (@samp{pthread_*}) do not use @var{errno}.
+Instead they return an error code directly.  The semaphore operations do
+use @var{errno}.
+
+@menu
+* Basic Thread Operations::     Creating, terminating, and waiting for threads.
+* Thread Attributes::           Tuning thread scheduling.
+* Cancellation::                Stopping a thread before it's done.
+* Cleanup Handlers::            Deallocating resources when a thread is
+                                  cancelled.
+* Mutexes::                     One way to synchronize threads.
+* Condition Variables::         Another way.
+* POSIX Semaphores::            And a third way.
+* Thread-Specific Data::        Variables with different values in
+                                  different threads.
+* Threads and Signal Handling:: Why you should avoid mixing the two, and
+                                  how to do it if you must.
+* Miscellaneous Thread Functions:: A grab bag of utility routines.
+@end menu
+
+@node Basic Thread Operations
+@section Basic Thread Operations
+
+These functions are the thread equivalents of @code{fork}, @code{exit},
+and @code{wait}.
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_create (pthread_t * @var{thread}, pthread_attr_t * @var{attr}, void * (*@var{start_routine})(void *), void * @var{arg})
+@code{pthread_create} creates a new thread of control that executes
+concurrently with the calling thread. The new thread calls the
+function @var{start_routine}, passing it @var{arg} as first argument. The
+new thread terminates either explicitly, by calling @code{pthread_exit},
+or implicitly, by returning from the @var{start_routine} function. The
+latter case is equivalent to calling @code{pthread_exit} with the result
+returned by @var{start_routine} as exit code.
+
+The @var{attr} argument specifies thread attributes to be applied to the
+new thread. @xref{Thread Attributes} for details. The @var{attr}
+argument can also be @code{NULL}, in which case default attributes are
+used: the created thread is joinable (not detached) and has an ordinary
+(not realtime) scheduling policy.
+
+On success, the identifier of the newly created thread is stored in the
+location pointed by the @var{thread} argument, and a 0 is returned. On
+error, a non-zero error code is returned.
+
+This function may return the following errors:
+@table @code
+@item EAGAIN
+Not enough system resources to create a process for the new thread,
+or more than @code{PTHREAD_THREADS_MAX} threads are already active.
+@end table
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun void pthread_exit (void *@var{retval})
+@code{pthread_exit} terminates the execution of the calling thread.  All
+cleanup handlers (@pxref{Cleanup Handlers}) that have been set for the
+calling thread with @code{pthread_cleanup_push} are executed in reverse
+order (the most recently pushed handler is executed first). Finalization
+functions for thread-specific data are then called for all keys that
+have non-@code{NULL} values associated with them in the calling thread
+(@pxref{Thread-Specific Data}).  Finally, execution of the calling
+thread is stopped.
+
+The @var{retval} argument is the return value of the thread. It can be
+retrieved from another thread using @code{pthread_join}.
+
+The @code{pthread_exit} function never returns.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_cancel (pthread_t @var{thread})
+
+@code{pthread_cancel} sends a cancellation request to the thread denoted
+by the @var{thread} argument.  If there is no such thread,
+@code{pthread_cancel} fails and returns @code{ESRCH}.  Otherwise it
+returns 0. @xref{Cancellation}, for details.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_join (pthread_t @var{th}, void **thread_@var{return})
+@code{pthread_join} suspends the execution of the calling thread until
+the thread identified by @var{th} terminates, either by calling
+@code{pthread_exit} or by being cancelled.
+
+If @var{thread_return} is not @code{NULL}, the return value of @var{th}
+is stored in the location pointed to by @var{thread_return}.  The return
+value of @var{th} is either the argument it gave to @code{pthread_exit},
+or @code{PTHREAD_CANCELED} if @var{th} was cancelled.
+
+The joined thread @code{th} must be in the joinable state: it must not
+have been detached using @code{pthread_detach} or the
+@code{PTHREAD_CREATE_DETACHED} attribute to @code{pthread_create}.
+
+When a joinable thread terminates, its memory resources (thread
+descriptor and stack) are not deallocated until another thread performs
+@code{pthread_join} on it. Therefore, @code{pthread_join} must be called
+once for each joinable thread created to avoid memory leaks.
+
+At most one thread can wait for the termination of a given
+thread. Calling @code{pthread_join} on a thread @var{th} on which
+another thread is already waiting for termination returns an error.
+
+@code{pthread_join} is a cancellation point. If a thread is canceled
+while suspended in @code{pthread_join}, the thread execution resumes
+immediately and the cancellation is executed without waiting for the
+@var{th} thread to terminate. If cancellation occurs during
+@code{pthread_join}, the @var{th} thread remains not joined.
+
+On success, the return value of @var{th} is stored in the location
+pointed to by @var{thread_return}, and 0 is returned. On error, one of
+the following values is returned:
+@table @code
+@item ESRCH
+No thread could be found corresponding to that specified by @var{th}.
+@item EINVAL
+The @var{th} thread has been detached, or another thread is already
+waiting on termination of @var{th}.
+@item EDEADLK
+The @var{th} argument refers to the calling thread.
+@end table
+@end deftypefun
+
+@node Thread Attributes
+@section Thread Attributes
+
+@comment pthread.h
+@comment POSIX
+
+Threads have a number of attributes that may be set at creation time.
+This is done by filling a thread attribute object @var{attr} of type
+@code{pthread_attr_t}, then passing it as second argument to
+@code{pthread_create}. Passing @code{NULL} is equivalent to passing a
+thread attribute object with all attributes set to their default values.
+
+Attribute objects are consulted only when creating a new thread.  The
+same attribute object can be used for creating several threads.
+Modifying an attribute object after a call to @code{pthread_create} does
+not change the attributes of the thread previously created.
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_attr_init (pthread_attr_t *@var{attr})
+@code{pthread_attr_init} initializes the thread attribute object
+@var{attr} and fills it with default values for the attributes. (The
+default values are listed below for each attribute.)
+
+Each attribute @var{attrname} (see below for a list of all attributes)
+can be individually set using the function
+@code{pthread_attr_set@var{attrname}} and retrieved using the function
+@code{pthread_attr_get@var{attrname}}.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_attr_destroy (pthread_attr_t *@var{attr})
+@code{pthread_attr_destroy} destroys the attribute object pointed to by
+@var{attr} releasing any resources associated with it.  @var{attr} is
+left in an undefined state, and you must not use it again in a call to
+any pthreads function until it has been reinitialized.
+@end deftypefun
+
+@findex pthread_attr_setinheritsched
+@findex pthread_attr_setschedparam
+@findex pthread_attr_setschedpolicy
+@findex pthread_attr_setscope
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_attr_set@var{attr} (pthread_attr_t *@var{obj}, int @var{value})
+Set attribute @var{attr} to @var{value} in the attribute object pointed
+to by @var{obj}.  See below for a list of possible attributes and the
+values they can take.
+
+On success, these functions return 0.  If @var{value} is not meaningful
+for the @var{attr} being modified, they will return the error code
+@code{EINVAL}.  Some of the functions have other failure modes; see
+below.
+@end deftypefun
+
+@findex pthread_attr_getinheritsched
+@findex pthread_attr_getschedparam
+@findex pthread_attr_getschedpolicy
+@findex pthread_attr_getscope
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_attr_get@var{attr} (const pthread_attr_t *@var{obj}, int *@var{value})
+Store the current setting of @var{attr} in @var{obj} into the variable
+pointed to by @var{value}.
+
+These functions always return 0.
+@end deftypefun
+
+The following thread attributes are supported:
+@table @samp
+@item detachstate
+Choose whether the thread is created in the joinable state (value
+@code{PTHREAD_CREATE_JOINABLE}) or in the detached state
+(@code{PTHREAD_CREATE_DETACHED}).  The default is
+@code{PTHREAD_CREATE_JOINABLE}.
+
+In the joinable state, another thread can synchronize on the thread
+termination and recover its termination code using @code{pthread_join},
+but some of the thread resources are kept allocated after the thread
+terminates, and reclaimed only when another thread performs
+@code{pthread_join} on that thread.
+
+In the detached state, the thread resources are immediately freed when
+it terminates, but @code{pthread_join} cannot be used to synchronize on
+the thread termination.
+
+A thread created in the joinable state can later be put in the detached
+thread using @code{pthread_detach}.
+
+@item schedpolicy
+Select the scheduling policy for the thread: one of @code{SCHED_OTHER}
+(regular, non-realtime scheduling), @code{SCHED_RR} (realtime,
+round-robin) or @code{SCHED_FIFO} (realtime, first-in first-out).
+The default is @code{SCHED_OTHER}.
+@c Not doc'd in our manual: FIXME.
+@c See @code{sched_setpolicy} for more information on scheduling policies.
+
+The realtime scheduling policies @code{SCHED_RR} and @code{SCHED_FIFO}
+are available only to processes with superuser privileges.
+@code{pthread_attr_setschedparam} will fail and return @code{ENOTSUP} if
+you try to set a realtime policy when you are unprivileged.
+
+The scheduling policy of a thread can be changed after creation with
+@code{pthread_setschedparam}.
+
+@item schedparam
+Change the scheduling parameter (the scheduling priority)
+for the thread.  The default is 0.
+
+This attribute is not significant if the scheduling policy is
+@code{SCHED_OTHER}; it only matters for the realtime policies
+@code{SCHED_RR} and @code{SCHED_FIFO}.
+
+The scheduling priority of a thread can be changed after creation with
+@code{pthread_setschedparam}.
+
+@item inheritsched
+Choose whether the scheduling policy and scheduling parameter for the
+newly created thread are determined by the values of the
+@var{schedpolicy} and @var{schedparam} attributes (value
+@code{PTHREAD_EXPLICIT_SCHED}) or are inherited from the parent thread
+(value @code{PTHREAD_INHERIT_SCHED}).  The default is
+@code{PTHREAD_EXPLICIT_SCHED}.
+
+@item scope
+Choose the scheduling contention scope for the created thread.  The
+default is @code{PTHREAD_SCOPE_SYSTEM}, meaning that the threads contend
+for CPU time with all processes running on the machine. In particular,
+thread priorities are interpreted relative to the priorities of all
+other processes on the machine. The other possibility,
+@code{PTHREAD_SCOPE_PROCESS}, means that scheduling contention occurs
+only between the threads of the running process: thread priorities are
+interpreted relative to the priorities of the other threads of the
+process, regardless of the priorities of other processes.
+
+@code{PTHREAD_SCOPE_PROCESS} is not supported in LinuxThreads.  If you
+try to set the scope to this value @code{pthread_attr_setscope} will
+fail and return @code{ENOTSUP}.
+@end table
+
+@node Cancellation
+@section Cancellation
+
+Cancellation is the mechanism by which a thread can terminate the
+execution of another thread. More precisely, a thread can send a
+cancellation request to another thread. Depending on its settings, the
+target thread can then either ignore the request, honor it immediately,
+or defer it till it reaches a cancellation point.  When threads are
+first created by @code{pthread_create}, they always defer cancellation
+requests.
+
+When a thread eventually honors a cancellation request, it behaves as if
+@code{pthread_exit(PTHREAD_CANCELED)} was called.  All cleanup handlers
+are executed in reverse order, finalization functions for
+thread-specific data are called, and finally the thread stops executing.
+If the cancelled thread was joinable, the return value
+@code{PTHREAD_CANCELED} is provided to whichever thread calls
+@var{pthread_join} on it. See @code{pthread_exit} for more information.
+
+Cancellation points are the points where the thread checks for pending
+cancellation requests and performs them.  The POSIX threads functions
+@code{pthread_join}, @code{pthread_cond_wait},
+@code{pthread_cond_timedwait}, @code{pthread_testcancel},
+@code{sem_wait}, and @code{sigwait} are cancellation points.  In
+addition, these system calls are cancellation points:
+
+@multitable @columnfractions .33 .33 .33
+@item @t{accept}       @tab @t{open}           @tab @t{sendmsg}
+@item @t{close}                @tab @t{pause}          @tab @t{sendto}
+@item @t{connect}      @tab @t{read}           @tab @t{system}
+@item @t{fcntl}                @tab @t{recv}           @tab @t{tcdrain}
+@item @t{fsync}                @tab @t{recvfrom}       @tab @t{wait}
+@item @t{lseek}                @tab @t{recvmsg}        @tab @t{waitpid}
+@item @t{msync}                @tab @t{send}           @tab @t{write}
+@item @t{nanosleep}
+@end multitable
+
+@noindent
+All library functions that call these functions (such as
+@code{printf}) are also cancellation points.
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_setcancelstate (int @var{state}, int *@var{oldstate})
+@code{pthread_setcancelstate} changes the cancellation state for the
+calling thread -- that is, whether cancellation requests are ignored or
+not. The @var{state} argument is the new cancellation state: either
+@code{PTHREAD_CANCEL_ENABLE} to enable cancellation, or
+@code{PTHREAD_CANCEL_DISABLE} to disable cancellation (cancellation
+requests are ignored).
+
+If @var{oldstate} is not @code{NULL}, the previous cancellation state is
+stored in the location pointed to by @var{oldstate}, and can thus be
+restored later by another call to @code{pthread_setcancelstate}.
+
+If the @var{state} argument is not @code{PTHREAD_CANCEL_ENABLE} or
+@code{PTHREAD_CANCEL_DISABLE}, @code{pthread_setcancelstate} fails and
+returns @code{EINVAL}.  Otherwise it returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_setcanceltype (int @var{type}, int *@var{oldtype})
+@code{pthread_setcanceltype} changes the type of responses to
+cancellation requests for the calling thread: asynchronous (immediate)
+or deferred.  The @var{type} argument is the new cancellation type:
+either @code{PTHREAD_CANCEL_ASYNCHRONOUS} to cancel the calling thread
+as soon as the cancellation request is received, or
+@code{PTHREAD_CANCEL_DEFERRED} to keep the cancellation request pending
+until the next cancellation point. If @var{oldtype} is not @code{NULL},
+the previous cancellation state is stored in the location pointed to by
+@var{oldtype}, and can thus be restored later by another call to
+@code{pthread_setcanceltype}.
+
+If the @var{type} argument is not @code{PTHREAD_CANCEL_DEFERRED} or
+@code{PTHREAD_CANCEL_ASYNCHRONOUS}, @code{pthread_setcanceltype} fails
+and returns @code{EINVAL}.  Otherwise it returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun void pthread_testcancel (@var{void})
+@code{pthread_testcancel} does nothing except testing for pending
+cancellation and executing it. Its purpose is to introduce explicit
+checks for cancellation in long sequences of code that do not call
+cancellation point functions otherwise.
+@end deftypefun
+
+@node Cleanup Handlers
+@section Cleanup Handlers
+
+Cleanup handlers are functions that get called when a thread terminates,
+either by calling @code{pthread_exit} or because of
+cancellation. Cleanup handlers are installed and removed following a
+stack-like discipline.
+
+The purpose of cleanup handlers is to free the resources that a thread
+may hold at the time it terminates. In particular, if a thread exits or
+is cancelled while it owns a locked mutex, the mutex will remain locked
+forever and prevent other threads from executing normally. The best way
+to avoid this is, just before locking the mutex, to install a cleanup
+handler whose effect is to unlock the mutex. Cleanup handlers can be
+used similarly to free blocks allocated with @code{malloc} or close file
+descriptors on thread termination.
+
+Here is how to lock a mutex @var{mut} in such a way that it will be
+unlocked if the thread is canceled while @var{mut} is locked:
+
+@smallexample
+pthread_cleanup_push(pthread_mutex_unlock, (void *) &mut);
+pthread_mutex_lock(&mut);
+/* do some work */
+pthread_mutex_unlock(&mut);
+pthread_cleanup_pop(0);
+@end smallexample
+
+Equivalently, the last two lines can be replaced by
+
+@smallexample
+pthread_cleanup_pop(1);
+@end smallexample
+
+Notice that the code above is safe only in deferred cancellation mode
+(see @code{pthread_setcanceltype}). In asynchronous cancellation mode, a
+cancellation can occur between @code{pthread_cleanup_push} and
+@code{pthread_mutex_lock}, or between @code{pthread_mutex_unlock} and
+@code{pthread_cleanup_pop}, resulting in both cases in the thread trying
+to unlock a mutex not locked by the current thread. This is the main
+reason why asynchronous cancellation is difficult to use.
+
+If the code above must also work in asynchronous cancellation mode,
+then it must switch to deferred mode for locking and unlocking the
+mutex:
+
+@smallexample
+pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);
+pthread_cleanup_push(pthread_mutex_unlock, (void *) &mut);
+pthread_mutex_lock(&mut);
+/* do some work */
+pthread_cleanup_pop(1);
+pthread_setcanceltype(oldtype, NULL);
+@end smallexample
+
+The code above can be rewritten in a more compact and efficient way,
+using the non-portable functions @code{pthread_cleanup_push_defer_np}
+and @code{pthread_cleanup_pop_restore_np}:
+
+@smallexample
+pthread_cleanup_push_defer_np(pthread_mutex_unlock, (void *) &mut);
+pthread_mutex_lock(&mut);
+/* do some work */
+pthread_cleanup_pop_restore_np(1);
+@end smallexample
+
+@comment pthread.h
+@comment POSIX
+@deftypefun void pthread_cleanup_push (void (*@var{routine}) (void *), void *@var{arg})
+
+@code{pthread_cleanup_push} installs the @var{routine} function with
+argument @var{arg} as a cleanup handler. From this point on to the
+matching @code{pthread_cleanup_pop}, the function @var{routine} will be
+called with arguments @var{arg} when the thread terminates, either
+through @code{pthread_exit} or by cancellation. If several cleanup
+handlers are active at that point, they are called in LIFO order: the
+most recently installed handler is called first.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun void pthread_cleanup_pop (int @var{execute})
+@code{pthread_cleanup_pop} removes the most recently installed cleanup
+handler. If the @var{execute} argument is not 0, it also executes the
+handler, by calling the @var{routine} function with arguments
+@var{arg}. If the @var{execute} argument is 0, the handler is only
+removed but not executed.
+@end deftypefun
+
+Matching pairs of @code{pthread_cleanup_push} and
+@code{pthread_cleanup_pop} must occur in the same function, at the same
+level of block nesting.  Actually, @code{pthread_cleanup_push} and
+@code{pthread_cleanup_pop} are macros, and the expansion of
+@code{pthread_cleanup_push} introduces an open brace @code{@{} with the
+matching closing brace @code{@}} being introduced by the expansion of the
+matching @code{pthread_cleanup_pop}.
+
+@comment pthread.h
+@comment GNU
+@deftypefun void pthread_cleanup_push_defer_np (void (*@var{routine}) (void *), void *@var{arg})
+@code{pthread_cleanup_push_defer_np} is a non-portable extension that
+combines @code{pthread_cleanup_push} and @code{pthread_setcanceltype}.
+It pushes a cleanup handler just as @code{pthread_cleanup_push} does,
+but also saves the current cancellation type and sets it to deferred
+cancellation. This ensures that the cleanup mechanism is effective even
+if the thread was initially in asynchronous cancellation mode.
+@end deftypefun
+
+@comment pthread.h
+@comment GNU
+@deftypefun void pthread_cleanup_pop_restore_np (int @var{execute})
+@code{pthread_cleanup_pop_restore_np} pops a cleanup handler introduced
+by @code{pthread_cleanup_push_defer_np}, and restores the cancellation
+type to its value at the time @code{pthread_cleanup_push_defer_np} was
+called.
+@end deftypefun
+
+@code{pthread_cleanup_push_defer_np} and
+@code{pthread_cleanup_pop_restore_np} must occur in matching pairs, at
+the same level of block nesting.
+
+The sequence
+
+@smallexample
+pthread_cleanup_push_defer_np(routine, arg);
+...
+pthread_cleanup_pop_defer_np(execute);
+@end smallexample
+
+@noindent
+is functionally equivalent to (but more compact and efficient than)
+
+@smallexample
+@{
+  int oldtype;
+  pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);
+  pthread_cleanup_push(routine, arg);
+  ...
+  pthread_cleanup_pop(execute);
+  pthread_setcanceltype(oldtype, NULL);
+@}
+@end smallexample
+
+
+@node Mutexes
+@section Mutexes
+
+A mutex is a MUTual EXclusion device, and is useful for protecting
+shared data structures from concurrent modifications, and implementing
+critical sections and monitors.
+
+A mutex has two possible states: unlocked (not owned by any thread),
+and locked (owned by one thread). A mutex can never be owned by two
+different threads simultaneously. A thread attempting to lock a mutex
+that is already locked by another thread is suspended until the owning
+thread unlocks the mutex first.
+
+None of the mutex functions is a cancellation point, not even
+@code{pthread_mutex_lock}, in spite of the fact that it can suspend a
+thread for arbitrary durations. This way, the status of mutexes at
+cancellation points is predictable, allowing cancellation handlers to
+unlock precisely those mutexes that need to be unlocked before the
+thread stops executing. Consequently, threads using deferred
+cancellation should never hold a mutex for extended periods of time.
+
+It is not safe to call mutex functions from a signal handler.  In
+particular, calling @code{pthread_mutex_lock} or
+@code{pthread_mutex_unlock} from a signal handler may deadlock the
+calling thread.
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_mutex_init (pthread_mutex_t *@var{mutex}, const pthread_mutexattr_t *@var{mutexattr})
+
+@code{pthread_mutex_init} initializes the mutex object pointed to by
+@var{mutex} according to the mutex attributes specified in @var{mutexattr}.
+If @var{mutexattr} is @code{NULL}, default attributes are used instead.
+
+The LinuxThreads implementation supports only one mutex attribute,
+the @var{mutex kind}, which is either ``fast'', ``recursive'', or
+``error checking''. The kind of a mutex determines whether
+it can be locked again by a thread that already owns it.
+The default kind is ``fast''.
+
+Variables of type @code{pthread_mutex_t} can also be initialized
+statically, using the constants @code{PTHREAD_MUTEX_INITIALIZER} (for
+fast mutexes), @code{PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP} (for
+recursive mutexes), and @code{PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP}
+(for error checking mutexes).
+
+@code{pthread_mutex_init} always returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_mutex_lock (pthread_mutex_t *mutex))
+@code{pthread_mutex_lock} locks the given mutex. If the mutex is
+currently unlocked, it becomes locked and owned by the calling thread,
+and @code{pthread_mutex_lock} returns immediately. If the mutex is
+already locked by another thread, @code{pthread_mutex_lock} suspends the
+calling thread until the mutex is unlocked.
+
+If the mutex is already locked by the calling thread, the behavior of
+@code{pthread_mutex_lock} depends on the kind of the mutex. If the mutex
+is of the ``fast'' kind, the calling thread is suspended.  It will
+remain suspended forever, because no other thread can unlock the mutex.
+If  the mutex is of the ``error checking'' kind, @code{pthread_mutex_lock}
+returns immediately with the error code @code{EDEADLK}.  If the mutex is
+of the ``recursive'' kind, @code{pthread_mutex_lock} succeeds and
+returns immediately, recording the number of times the calling thread
+has locked the mutex. An equal number of @code{pthread_mutex_unlock}
+operations must be performed before the mutex returns to the unlocked
+state.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_mutex_trylock (pthread_mutex_t *@var{mutex})
+@code{pthread_mutex_trylock} behaves identically to
+@code{pthread_mutex_lock}, except that it does not block the calling
+thread if the mutex is already locked by another thread (or by the
+calling thread in the case of a ``fast'' mutex). Instead,
+@code{pthread_mutex_trylock} returns immediately with the error code
+@code{EBUSY}.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_mutex_unlock (pthread_mutex_t *@var{mutex})
+@code{pthread_mutex_unlock} unlocks the given mutex. The mutex is
+assumed to be locked and owned by the calling thread on entrance to
+@code{pthread_mutex_unlock}. If the mutex is of the ``fast'' kind,
+@code{pthread_mutex_unlock} always returns it to the unlocked state. If
+it is of the ``recursive'' kind, it decrements the locking count of the
+mutex (number of @code{pthread_mutex_lock} operations performed on it by
+the calling thread), and only when this count reaches zero is the mutex
+actually unlocked.
+
+On ``error checking'' mutexes, @code{pthread_mutex_unlock} actually
+checks at run-time that the mutex is locked on entrance, and that it was
+locked by the same thread that is now calling
+@code{pthread_mutex_unlock}.  If these conditions are not met,
+@code{pthread_mutex_unlock} returns @code{EPERM}, and the mutex remains
+unchanged.  ``Fast'' and ``recursive'' mutexes perform no such checks,
+thus allowing a locked mutex to be unlocked by a thread other than its
+owner. This is non-portable behavior and must not be relied upon.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_mutex_destroy (pthread_mutex_t *@var{mutex})
+@code{pthread_mutex_destroy} destroys a mutex object, freeing the
+resources it might hold. The mutex must be unlocked on entrance. In the
+LinuxThreads implementation, no resources are associated with mutex
+objects, thus @code{pthread_mutex_destroy} actually does nothing except
+checking that the mutex is unlocked.
+
+If the mutex is locked by some thread, @code{pthread_mutex_destroy}
+returns @code{EBUSY}.  Otherwise it returns 0.
+@end deftypefun
+
+If any of the above functions (except @code{pthread_mutex_init})
+is applied to an uninitialized mutex, they will simply return
+@code{EINVAL} and do nothing.
+
+A shared global variable @var{x} can be protected by a mutex as follows:
+
+@smallexample
+int x;
+pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
+@end smallexample
+
+All accesses and modifications to @var{x} should be bracketed by calls to
+@code{pthread_mutex_lock} and @code{pthread_mutex_unlock} as follows:
+
+@smallexample
+pthread_mutex_lock(&mut);
+/* operate on x */
+pthread_mutex_unlock(&mut);
+@end smallexample
+
+Mutex attributes can be specified at mutex creation time, by passing a
+mutex attribute object as second argument to @code{pthread_mutex_init}.
+Passing @code{NULL} is equivalent to passing a mutex attribute object
+with all attributes set to their default values.
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_mutexattr_init (pthread_mutexattr_t *@var{attr})
+@code{pthread_mutexattr_init} initializes the mutex attribute object
+@var{attr} and fills it with default values for the attributes.
+
+This function always returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_mutexattr_destroy (pthread_mutexattr_t *@var{attr})
+@code{pthread_mutexattr_destroy} destroys a mutex attribute object,
+which must not be reused until it is
+reinitialized. @code{pthread_mutexattr_destroy} does nothing in the
+LinuxThreads implementation.
+
+This function always returns 0.
+@end deftypefun
+
+LinuxThreads supports only one mutex attribute: the mutex kind, which is
+either @code{PTHREAD_MUTEX_FAST_NP} for ``fast'' mutexes,
+@code{PTHREAD_MUTEX_RECURSIVE_NP} for ``recursive'' mutexes, or
+@code{PTHREAD_MUTEX_ERRORCHECK_NP} for ``error checking'' mutexes.  As
+the @code{NP} suffix indicates, this is a non-portable extension to the
+POSIX standard and should not be employed in portable programs.
+
+The mutex kind determines what happens if a thread attempts to lock a
+mutex it already owns with @code{pthread_mutex_lock}. If the mutex is of
+the ``fast'' kind, @code{pthread_mutex_lock} simply suspends the calling
+thread forever.  If the mutex is of the ``error checking'' kind,
+@code{pthread_mutex_lock} returns immediately with the error code
+@code{EDEADLK}.  If the mutex is of the ``recursive'' kind, the call to
+@code{pthread_mutex_lock} returns immediately with a success return
+code. The number of times the thread owning the mutex has locked it is
+recorded in the mutex. The owning thread must call
+@code{pthread_mutex_unlock} the same number of times before the mutex
+returns to the unlocked state.
+
+The default mutex kind is ``fast'', that is, @code{PTHREAD_MUTEX_FAST_NP}.
+
+@comment pthread.h
+@comment GNU
+@deftypefun int pthread_mutexattr_setkind_np (pthread_mutexattr_t *@var{attr}, int @var{kind})
+@code{pthread_mutexattr_setkind_np} sets the mutex kind attribute in
+@var{attr} to the value specified by @var{kind}.
+
+If @var{kind} is not @code{PTHREAD_MUTEX_FAST_NP},
+@code{PTHREAD_MUTEX_RECURSIVE_NP}, or
+@code{PTHREAD_MUTEX_ERRORCHECK_NP}, this function will return
+@code{EINVAL} and leave @var{attr} unchanged.
+@end deftypefun
+
+@comment pthread.h
+@comment GNU
+@deftypefun int pthread_mutexattr_getkind_np (const pthread_mutexattr_t *@var{attr}, int *@var{kind})
+@code{pthread_mutexattr_getkind_np} retrieves the current value of the
+mutex kind attribute in @var{attr} and stores it in the location pointed
+to by @var{kind}.
+
+This function always returns 0.
+@end deftypefun
+
+@node Condition Variables
+@section Condition Variables
+
+A condition (short for ``condition variable'') is a synchronization
+device that allows threads to suspend execution until some predicate on
+shared data is satisfied. The basic operations on conditions are: signal
+the condition (when the predicate becomes true), and wait for the
+condition, suspending the thread execution until another thread signals
+the condition.
+
+A condition variable must always be associated with a mutex, to avoid
+the race condition where a thread prepares to wait on a condition
+variable and another thread signals the condition just before the first
+thread actually waits on it.
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_cond_init (pthread_cond_t *@var{cond}, pthread_condattr_t *cond_@var{attr})
+
+@code{pthread_cond_init} initializes the condition variable @var{cond},
+using the condition attributes specified in @var{cond_attr}, or default
+attributes if @var{cond_attr} is @code{NULL}. The LinuxThreads
+implementation supports no attributes for conditions, hence the
+@var{cond_attr} parameter is actually ignored.
+
+Variables of type @code{pthread_cond_t} can also be initialized
+statically, using the constant @code{PTHREAD_COND_INITIALIZER}.
+
+This function always returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_cond_signal (pthread_cond_t *@var{cond})
+@code{pthread_cond_signal} restarts one of the threads that are waiting
+on the condition variable @var{cond}. If no threads are waiting on
+@var{cond}, nothing happens. If several threads are waiting on
+@var{cond}, exactly one is restarted, but it is not specified which.
+
+This function always returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_cond_broadcast (pthread_cond_t *@var{cond})
+@code{pthread_cond_broadcast} restarts all the threads that are waiting
+on the condition variable @var{cond}. Nothing happens if no threads are
+waiting on @var{cond}.
+
+This function always returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_cond_wait (pthread_cond_t *@var{cond}, pthread_mutex_t *@var{mutex})
+@code{pthread_cond_wait} atomically unlocks the @var{mutex} (as per
+@code{pthread_unlock_mutex}) and waits for the condition variable
+@var{cond} to be signaled. The thread execution is suspended and does
+not consume any CPU time until the condition variable is signaled. The
+@var{mutex} must be locked by the calling thread on entrance to
+@code{pthread_cond_wait}. Before returning to the calling thread,
+@code{pthread_cond_wait} re-acquires @var{mutex} (as per
+@code{pthread_lock_mutex}).
+
+Unlocking the mutex and suspending on the condition variable is done
+atomically. Thus, if all threads always acquire the mutex before
+signaling the condition, this guarantees that the condition cannot be
+signaled (and thus ignored) between the time a thread locks the mutex
+and the time it waits on the condition variable.
+
+This function always returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_cond_timedwait (pthread_cond_t *@var{cond}, pthread_mutex_t *@var{mutex}, const struct timespec *@var{abstime})
+@code{pthread_cond_timedwait} atomically unlocks @var{mutex} and waits
+on @var{cond}, as @code{pthread_cond_wait} does, but it also bounds the
+duration of the wait. If @var{cond} has not been signaled before time
+@var{abstime}, the mutex @var{mutex} is re-acquired and
+@code{pthread_cond_timedwait} returns the error code @code{ETIMEDOUT}.
+The wait can also be interrupted by a signal; in that case
+@code{pthread_cond_timedwait} returns @code{EINTR}.
+
+The @var{abstime} parameter specifies an absolute time, with the same
+origin as @code{time} and @code{gettimeofday}: an @var{abstime} of 0
+corresponds to 00:00:00 GMT, January 1, 1970.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_cond_destroy (pthread_cond_t *@var{cond})
+@code{pthread_cond_destroy} destroys the condition variable @var{cond},
+freeing the resources it might hold.  If any threads are waiting on the
+condition variable, @code{pthread_cond_destroy} leaves @var{cond}
+untouched and returns @code{EBUSY}.  Otherwise it returns 0, and
+@var{cond} must not be used again until it is reinitialized.
+
+In the LinuxThreads implementation, no resources are associated with
+condition variables, so @code{pthread_cond_destroy} actually does
+nothing.
+@end deftypefun
+
+@code{pthread_cond_wait} and @code{pthread_cond_timedwait} are
+cancellation points. If a thread is cancelled while suspended in one of
+these functions, the thread immediately resumes execution, relocks the
+mutex specified by  @var{mutex}, and finally executes the cancellation.
+Consequently, cleanup handlers are assured that @var{mutex} is locked
+when they are called.
+
+It is not safe to call the condition variable functions from a signal
+handler. In particular, calling @code{pthread_cond_signal} or
+@code{pthread_cond_broadcast} from a signal handler may deadlock the
+calling thread.
+
+Consider two shared variables @var{x} and @var{y}, protected by the
+mutex @var{mut}, and a condition variable @var{cond} that is to be
+signaled whenever @var{x} becomes greater than @var{y}.
+
+@smallexample
+int x,y;
+pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
+pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
+@end smallexample
+
+Waiting until @var{x} is greater than @var{y} is performed as follows:
+
+@smallexample
+pthread_mutex_lock(&mut);
+while (x <= y) @{
+        pthread_cond_wait(&cond, &mut);
+@}
+/* operate on x and y */
+pthread_mutex_unlock(&mut);
+@end smallexample
+
+Modifications on @var{x} and @var{y} that may cause @var{x} to become greater than
+@var{y} should signal the condition if needed:
+
+@smallexample
+pthread_mutex_lock(&mut);
+/* modify x and y */
+if (x > y) pthread_mutex_broadcast(&cond);
+pthread_mutex_unlock(&mut);
+@end smallexample
+
+If it can be proved that at most one waiting thread needs to be waken
+up (for instance, if there are only two threads communicating through
+@var{x} and @var{y}), @code{pthread_cond_signal} can be used as a slightly more
+efficient alternative to @code{pthread_cond_broadcast}. In doubt, use
+@code{pthread_cond_broadcast}.
+
+To wait for @var{x} to becomes greater than @var{y} with a timeout of 5
+seconds, do:
+
+@smallexample
+struct timeval now;
+struct timespec timeout;
+int retcode;
+
+pthread_mutex_lock(&mut);
+gettimeofday(&now);
+timeout.tv_sec = now.tv_sec + 5;
+timeout.tv_nsec = now.tv_usec * 1000;
+retcode = 0;
+while (x <= y && retcode != ETIMEDOUT) @{
+        retcode = pthread_cond_timedwait(&cond, &mut, &timeout);
+@}
+if (retcode == ETIMEDOUT) @{
+        /* timeout occurred */
+@} else @{
+        /* operate on x and y */
+@}
+pthread_mutex_unlock(&mut);
+@end smallexample
+
+Condition attributes can be specified at condition creation time, by
+passing a condition attribute object as second argument to
+@code{pthread_cond_init}.  Passing @code{NULL} is equivalent to passing
+a condition attribute object with all attributes set to their default
+values.
+
+The LinuxThreads implementation supports no attributes for
+conditions. The functions on condition attributes are included only for
+compliance with the POSIX standard.
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_condattr_init (pthread_condattr_t *@var{attr})
+@deftypefunx int pthread_condattr_destroy (pthread_condattr_t *@var{attr})
+@code{pthread_condattr_init} initializes the condition attribute object
+@var{attr} and fills it with default values for the attributes.
+@code{pthread_condattr_destroy} destroys the condition attribute object
+@var{attr}.
+
+Both functions do nothing in the LinuxThreads implementation.
+
+@code{pthread_condattr_init} and @code{pthread_condattr_destroy} always
+return 0.
+@end deftypefun
+
+@node POSIX Semaphores
+@section POSIX Semaphores
+
+@vindex SEM_VALUE_MAX
+Semaphores are counters for resources shared between threads. The
+basic operations on semaphores are: increment the counter atomically,
+and wait until the counter is non-null and decrement it atomically.
+
+Semaphores have a maximum value past which they cannot be incremented.
+The macro @code{SEM_VALUE_MAX} is defined to be this maximum value.  In
+the GNU C library, @code{SEM_VALUE_MAX} is equal to @code{INT_MAX}
+(@pxref{Range of Type}), but it may be much smaller on other systems.
+
+The pthreads library implements POSIX 1003.1b semaphores.  These should
+not be confused with System V semaphores (@code{ipc}, @code{semctl} and
+@code{semop}).
+@c !!! SysV IPC is not doc'd at all in our manual
+
+All the semaphore functions and macros are defined in @file{semaphore.h}.
+
+@comment semaphore.h
+@comment POSIX
+@deftypefun int sem_init (sem_t *@var{sem}, int @var{pshared}, unsigned int @var{value})
+@code{sem_init} initializes the semaphore object pointed to by
+@var{sem}. The count associated with the semaphore is set initially to
+@var{value}. The @var{pshared} argument indicates whether the semaphore
+is local to the current process (@var{pshared} is zero) or is to be
+shared between several processes (@var{pshared} is not zero).
+
+On success @code{sem_init} returns 0.  On failure it returns -1 and sets
+@var{errno} to one of the following values:
+
+@table @code
+@item EINVAL
+@var{value} exceeds the maximal counter value @code{SEM_VALUE_MAX}
+
+@item ENOSYS
+@var{pshared} is not zero.  LinuxThreads currently does not support
+process-shared semaphores.  (This will eventually change.)
+@end table
+@end deftypefun
+
+@comment semaphore.h
+@comment POSIX
+@deftypefun int sem_destroy (sem_t * @var{sem})
+@code{sem_destroy} destroys a semaphore object, freeing the resources it
+might hold.  If any threads are waiting on the semaphore when
+@code{sem_destroy} is called, it fails and sets @var{errno} to
+@code{EBUSY}.
+
+In the LinuxThreads implementation, no resources are associated with
+semaphore objects, thus @code{sem_destroy} actually does nothing except
+checking that no thread is waiting on the semaphore.  This will change
+when process-shared semaphores are implemented.
+@end deftypefun
+
+@comment semaphore.h
+@comment POSIX
+@deftypefun int sem_wait (sem_t * @var{sem})
+@code{sem_wait} suspends the calling thread until the semaphore pointed
+to by @var{sem} has non-zero count. It then atomically decreases the
+semaphore count.
+
+@code{sem_wait} is a cancellation point.  It always returns 0.
+@end deftypefun
+
+@comment semaphore.h
+@comment POSIX
+@deftypefun int sem_trywait (sem_t * @var{sem})
+@code{sem_trywait} is a non-blocking variant of @code{sem_wait}. If the
+semaphore pointed to by @var{sem} has non-zero count, the count is
+atomically decreased and @code{sem_trywait} immediately returns 0.  If
+the semaphore count is zero, @code{sem_trywait} immediately returns -1
+and sets errno to @code{EAGAIN}.
+@end deftypefun
+
+@comment semaphore.h
+@comment POSIX
+@deftypefun int sem_post (sem_t * @var{sem})
+@code{sem_post} atomically increases the count of the semaphore pointed to
+by @var{sem}. This function never blocks.
+
+@c !!! This para appears not to agree with the code.
+On processors supporting atomic compare-and-swap (Intel 486, Pentium and
+later, Alpha, PowerPC, MIPS II, Motorola 68k, Ultrasparc), the
+@code{sem_post} function is can safely be called from signal handlers.
+This is the only thread synchronization function provided by POSIX
+threads that is async-signal safe.  On the Intel 386 and earlier Sparc
+chips, the current LinuxThreads implementation of @code{sem_post} is not
+async-signal safe, because the hardware does not support the required
+atomic operations.
+
+@code{sem_post} always succeeds and returns 0, unless the semaphore
+count would exceed @code{SEM_VALUE_MAX} after being incremented.  In
+that case @code{sem_post} returns -1 and sets @var{errno} to
+@code{EINVAL}.  The semaphore count is left unchanged.
+@end deftypefun
+
+@comment semaphore.h
+@comment POSIX
+@deftypefun int sem_getvalue (sem_t * @var{sem}, int * @var{sval})
+@code{sem_getvalue} stores in the location pointed to by @var{sval} the
+current count of the semaphore @var{sem}.  It always returns 0.
+@end deftypefun
+
+@node Thread-Specific Data
+@section Thread-Specific Data
+
+Programs often need global or static variables that have different
+values in different threads. Since threads share one memory space, this
+cannot be achieved with regular variables. Thread-specific data is the
+POSIX threads answer to this need.
+
+Each thread possesses a private memory block, the thread-specific data
+area, or TSD area for short. This area is indexed by TSD keys. The TSD
+area associates values of type @code{void *} to TSD keys. TSD keys are
+common to all threads, but the value associated with a given TSD key can
+be different in each thread.
+
+For concreteness, the TSD areas can be viewed as arrays of @code{void *}
+pointers, TSD keys as integer indices into these arrays, and the value
+of a TSD key as the value of the corresponding array element in the
+calling thread.
+
+When a thread is created, its TSD area initially associates @code{NULL}
+with all keys.
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_key_create (pthread_key_t *@var{key}, void (*destr_function) (void *))
+@code{pthread_key_create} allocates a new TSD key. The key is stored in
+the location pointed to by @var{key}. There is a limit of
+@code{PTHREAD_KEYS_MAX} on the number of keys allocated at a given
+time. The value initially associated with the returned key is
+@code{NULL} in all currently executing threads.
+
+The @var{destr_function} argument, if not @code{NULL}, specifies a
+destructor function associated with the key. When a thread terminates
+via @code{pthread_exit} or by cancellation, @var{destr_function} is
+called on the value associated with the key in that thread. The
+@var{destr_function} is not called if a key is deleted with
+@code{pthread_key_delete} or a value is changed with
+@code{pthread_setspecific}.  The order in which destructor functions are
+called at thread termination time is unspecified.
+
+Before the destructor function is called, the @code{NULL} value is
+associated with the key in the current thread.  A destructor function
+might, however, re-associate non-@code{NULL} values to that key or some
+other key.  To deal with this, if after all the destructors have been
+called for all non-@code{NULL} values, there are still some
+non-@code{NULL} values with associated destructors, then the process is
+repeated.  The LinuxThreads implementation stops the process after
+@code{PTHREAD_DESTRUCTOR_ITERATIONS} iterations, even if some
+non-@code{NULL} values with associated descriptors remain.  Other
+implementations may loop indefinitely.
+
+@code{pthread_key_create} returns 0 unless @code{PTHREAD_KEYS_MAX} keys
+have already been allocated, in which case it fails and returns
+@code{EAGAIN}.
+@end deftypefun
+
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_key_delete (pthread_key_t @var{key})
+@code{pthread_key_delete} deallocates a TSD key. It does not check
+whether non-@code{NULL} values are associated with that key in the
+currently executing threads, nor call the destructor function associated
+with the key.
+
+If there is no such key @var{key}, it returns @code{EINVAL}.  Otherwise
+it returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_setspecific (pthread_key_t @var{key}, const void *@var{pointer})
+@code{pthread_setspecific} changes the value associated with @var{key}
+in the calling thread, storing the given @var{pointer} instead.
+
+If there is no such key @var{key}, it returns @code{EINVAL}.  Otherwise
+it returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun {void *} pthread_getspecific (pthread_key_t @var{key})
+@code{pthread_getspecific} returns the value currently associated with
+@var{key} in the calling thread.
+
+If there is no such key @var{key}, it returns @code{NULL}.
+@end deftypefun
+
+The following code fragment allocates a thread-specific array of 100
+characters, with automatic reclaimation at thread exit:
+
+@smallexample
+/* Key for the thread-specific buffer */
+static pthread_key_t buffer_key;
+
+/* Once-only initialisation of the key */
+static pthread_once_t buffer_key_once = PTHREAD_ONCE_INIT;
+
+/* Allocate the thread-specific buffer */
+void buffer_alloc(void)
+@{
+  pthread_once(&buffer_key_once, buffer_key_alloc);
+  pthread_setspecific(buffer_key, malloc(100));
+@}
+
+/* Return the thread-specific buffer */
+char * get_buffer(void)
+@{
+  return (char *) pthread_getspecific(buffer_key);
+@}
+
+/* Allocate the key */
+static void buffer_key_alloc()
+@{
+  pthread_key_create(&buffer_key, buffer_destroy);
+@}
+
+/* Free the thread-specific buffer */
+static void buffer_destroy(void * buf)
+@{
+  free(buf);
+@}
+@end smallexample
+
+@node Threads and Signal Handling
+@section Threads and Signal Handling
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_sigmask (int @var{how}, const sigset_t *@var{newmask}, sigset_t *@var{oldmask})
+@code{pthread_sigmask} changes the signal mask for the calling thread as
+described by the @var{how} and @var{newmask} arguments. If @var{oldmask}
+is not @code{NULL}, the previous signal mask is stored in the location
+pointed to by @var{oldmask}.
+
+The meaning of the @var{how} and @var{newmask} arguments is the same as
+for @code{sigprocmask}. If @var{how} is @code{SIG_SETMASK}, the signal
+mask is set to @var{newmask}. If @var{how} is @code{SIG_BLOCK}, the
+signals specified to @var{newmask} are added to the current signal mask.
+If @var{how} is @code{SIG_UNBLOCK}, the signals specified to
+@var{newmask} are removed from the current signal mask.
+
+Recall that signal masks are set on a per-thread basis, but signal
+actions and signal handlers, as set with @code{sigaction}, are shared
+between all threads.
+
+The @code{pthread_sigmask} function returns 0 on success, and one of the
+following error codes on error:
+@table @code
+@item EINVAL
+@var{how} is not one of @code{SIG_SETMASK}, @code{SIG_BLOCK}, or @code{SIG_UNBLOCK}
+
+@item EFAULT
+@var{newmask} or @var{oldmask} point to invalid addresses
+@end table
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_kill (pthread_t @var{thread}, int @var{signo})
+@code{pthread_kill} sends signal number @var{signo} to the thread
+@var{thread}.  The signal is delivered and handled as described in
+@ref{Signal Handling}.
+
+@code{pthread_kill} returns 0 on success, one of the following error codes
+on error:
+@table @code
+@item EINVAL
+@var{signo} is not a valid signal number
+
+@item ESRCH
+The thread @var{thread} does not exist (e.g. it has already terminated)
+@end table
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int sigwait (const sigset_t *@var{set}, int *@var{sig})
+@code{sigwait} suspends the calling thread until one of the signals in
+@var{set} is delivered to the calling thread. It then stores the number
+of the signal received in the location pointed to by @var{sig} and
+returns. The signals in @var{set} must be blocked and not ignored on
+entrance to @code{sigwait}. If the delivered signal has a signal handler
+function attached, that function is @emph{not} called.
+
+@code{sigwait} is a cancellation point.  It always returns 0.
+@end deftypefun
+
+For @code{sigwait} to work reliably, the signals being waited for must be
+blocked in all threads, not only in the calling thread, since
+otherwise the POSIX semantics for signal delivery do not guarantee
+that it's the thread doing the @code{sigwait} that will receive the signal.
+The best way to achieve this is block those signals before any threads
+are created, and never unblock them in the program other than by
+calling @code{sigwait}.
+
+Signal handling in LinuxThreads departs significantly from the POSIX
+standard. According to the standard, ``asynchronous'' (external) signals
+are addressed to the whole process (the collection of all threads),
+which then delivers them to one particular thread. The thread that
+actually receives the signal is any thread that does not currently block
+the signal.
+
+In LinuxThreads, each thread is actually a kernel process with its own
+PID, so external signals are always directed to one particular thread.
+If, for instance, another thread is blocked in @code{sigwait} on that
+signal, it will not be restarted.
+
+The LinuxThreads implementation of @code{sigwait} installs dummy signal
+handlers for the signals in @var{set} for the duration of the
+wait. Since signal handlers are shared between all threads, other
+threads must not attach their own signal handlers to these signals, or
+alternatively they should all block these signals (which is recommended
+anyway).
+
+@node Miscellaneous Thread Functions
+@section Miscellaneous Thread Functions
+
+@comment pthread.h
+@comment POSIX
+@deftypefun {pthread_t} pthread_self (@var{void})
+@code{pthread_self} returns the thread identifier for the calling thread.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_equal (pthread_t thread1, pthread_t thread2)
+@code{pthread_equal} determines if two thread identifiers refer to the same
+thread.
+
+A non-zero value is returned if @var{thread1} and @var{thread2} refer to
+the same thread. Otherwise, 0 is returned.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_detach (pthread_t @var{th})
+@code{pthread_detach} puts the thread @var{th} in the detached
+state. This guarantees that the memory resources consumed by @var{th}
+will be freed immediately when @var{th} terminates. However, this
+prevents other threads from synchronizing on the termination of @var{th}
+using @code{pthread_join}.
+
+A thread can be created initially in the detached state, using the
+@code{detachstate} attribute to @code{pthread_create}. In contrast,
+@code{pthread_detach} applies to threads created in the joinable state,
+and which need to be put in the detached state later.
+
+After @code{pthread_detach} completes, subsequent attempts to perform
+@code{pthread_join} on @var{th} will fail. If another thread is already
+joining the thread @var{th} at the time @code{pthread_detach} is called,
+@code{pthread_detach} does nothing and leaves @var{th} in the joinable
+state.
+
+On success, 0 is returned. On error, one of the following codes is
+returned:
+@table @code
+@item ESRCH
+No thread could be found corresponding to that specified by @var{th}
+@item EINVAL
+The thread @var{th} is already in the detached state
+@end table
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_atfork (void (*@var{prepare})(void), void (*@var{parent})(void), void (*@var{child})(void))
+
+@code{pthread_atfork} registers handler functions to be called just
+before and just after a new process is created with @code{fork}. The
+@var{prepare} handler will be called from the parent process, just
+before the new process is created. The @var{parent} handler will be
+called from the parent process, just before @code{fork} returns. The
+@var{child} handler will be called from the child process, just before
+@code{fork} returns.
+
+@code{pthread_atfork} returns 0 on success and a non-zero error code on
+error.
+
+One or more of the three handlers @var{prepare}, @var{parent} and
+@var{child} can be given as @code{NULL}, meaning that no handler needs
+to be called at the corresponding point.
+
+@code{pthread_atfork} can be called several times to install several
+sets of handlers. At @code{fork} time, the @var{prepare} handlers are
+called in LIFO order (last added with @code{pthread_atfork}, first
+called before @code{fork}), while the @var{parent} and @var{child}
+handlers are called in FIFO order (first added, first called).
+
+If there is insufficient memory available to register the handlers,
+@code{pthread_atfork} fails and returns @code{ENOMEM}.  Otherwise it
+returns 0.
+@end deftypefun
+
+To understand the purpose of @code{pthread_atfork}, recall that
+@code{fork} duplicates the whole memory space, including mutexes in
+their current locking state, but only the calling thread: other threads
+are not running in the child process. Thus, if a mutex is locked by a
+thread other than the thread calling @code{fork}, that mutex will remain
+locked forever in the child process, possibly blocking the execution of
+the child process. To avoid this, install handlers with
+@code{pthread_atfork} as follows: the @var{prepare} handler locks the
+global mutexes (in locking order), and the @var{parent} and @var{child}
+handlers unlock them (in reverse order). Alternatively, @var{prepare}
+and @var{parent} can be set to @code{NULL} and @var{child} to a function
+that calls @code{pthread_mutex_init} on the global mutexes.
+
+@comment pthread.h
+@comment GNU
+@deftypefun void pthread_kill_other_threads_np (@var{void})
+@code{pthread_kill_other_threads_np} is a non-portable LinuxThreads extension.
+It causes all threads in the program to terminate immediately, except
+the calling thread which proceeds normally. It is intended to be
+called just before a thread calls one of the @code{exec} functions,
+e.g. @code{execve}.
+
+Termination of the other threads is not performed through
+@code{pthread_cancel} and completely bypasses the cancellation
+mechanism. Hence, the current settings for cancellation state and
+cancellation type are ignored, and the cleanup handlers are not
+executed in the terminated threads.
+
+According to POSIX 1003.1c, a successful @code{exec*} in one of the
+threads should automatically terminate all other threads in the program.
+This behavior is not yet implemented in LinuxThreads.  Calling
+@code{pthread_kill_other_threads_np} before @code{exec*} achieves much
+of the same behavior, except that if @code{exec*} ultimately fails, then
+all other threads are already killed.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_once (pthread_once_t *once_@var{control}, void (*@var{init_routine}) (void))
+
+The purpose of @code{pthread_once} is to ensure that a piece of
+initialization code is executed at most once. The @var{once_control}
+argument points to a static or extern variable statically initialized
+to @code{PTHREAD_ONCE_INIT}.
+
+The first time @code{pthread_once} is called with a given
+@var{once_control} argument, it calls @var{init_routine} with no
+argument and changes the value of the @var{once_control} variable to
+record that initialization has been performed. Subsequent calls to
+@code{pthread_once} with the same @code{once_control} argument do
+nothing.
+
+@code{pthread_once} always returns 0.
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_setschedparam (pthread_t target_@var{thread}, int @var{policy}, const struct sched_param *@var{param})
+
+@code{pthread_setschedparam} sets the scheduling parameters for the
+thread @var{target_thread} as indicated by @var{policy} and
+@var{param}. @var{policy} can be either @code{SCHED_OTHER} (regular,
+non-realtime scheduling), @code{SCHED_RR} (realtime, round-robin) or
+@code{SCHED_FIFO} (realtime, first-in first-out). @var{param} specifies
+the scheduling priority for the two realtime policies.  See
+@code{sched_setpolicy} for more information on scheduling policies.
+
+The realtime scheduling policies @code{SCHED_RR} and @code{SCHED_FIFO}
+are available only to processes with superuser privileges.
+
+On success, @code{pthread_setschedparam} returns 0.  On error it returns
+one of the following codes:
+@table @code
+@item EINVAL
+@var{policy} is not one of @code{SCHED_OTHER}, @code{SCHED_RR},
+@code{SCHED_FIFO}, or the priority value specified by @var{param} is not
+valid for the specified policy
+
+@item EPERM
+Realtime scheduling was requested but the calling process does not have
+sufficient privileges.
+
+@item ESRCH
+The @var{target_thread} is invalid or has already terminated
+
+@item EFAULT
+@var{param} points outside the process memory space
+@end table
+@end deftypefun
+
+@comment pthread.h
+@comment POSIX
+@deftypefun int pthread_getschedparam (pthread_t target_@var{thread}, int *@var{policy}, struct sched_param *@var{param})
+
+@code{pthread_getschedparam} retrieves the scheduling policy and
+scheduling parameters for the thread @var{target_thread} and stores them
+in the locations pointed to by @var{policy} and @var{param},
+respectively.
+
+@code{pthread_getschedparam} returns 0 on success, or one of the
+following error codes on failure:
+@table @code
+@item ESRCH
+The @var{target_thread} is invalid or has already terminated.
+
+@item EFAULT
+@var{policy} or @var{param} point outside the process memory space.
+
+@end table
+@end deftypefun