Move contents to w_sqrt.c and provide stub.
authordrepper <drepper>
Fri, 29 Aug 1997 00:50:08 +0000 (00:50 +0000)
committerdrepper <drepper>
Fri, 29 Aug 1997 00:50:08 +0000 (00:50 +0000)
sysdeps/powerpc/e_sqrt.c
sysdeps/powerpc/e_sqrtf.c

index df80973..9416ea6 100644 (file)
@@ -1,141 +1 @@
-/* Single-precision floating point square root.
-   Copyright (C) 1997 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Library General Public License as
-   published by the Free Software Foundation; either version 2 of the
-   License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Library General Public License for more details.
-
-   You should have received a copy of the GNU Library General Public
-   License along with the GNU C Library; see the file COPYING.LIB.  If not,
-   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
-
-#include <math.h>
-#include <math_private.h>
-#include <fenv_libc.h>
-#include <inttypes.h>
-
-static const double almost_half = 0.5000000000000001;  /* 0.5 + 2^-53 */
-static const uint32_t a_nan = 0x7fc00000;
-static const uint32_t a_inf = 0x7f800000;
-static const float two108 = 3.245185536584267269e+32;
-static const float twom54 = 5.551115123125782702e-17;
-extern const float __t_sqrt[1024];
-
-/* The method is based on a description in
-   Computation of elementary functions on the IBM RISC System/6000 processor,
-   P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
-   Basically, it consists of two interleaved Newton-Rhapson approximations,
-   one to find the actual square root, and one to find its reciprocal
-   without the expense of a division operation.   The tricky bit here
-   is the use of the POWER/PowerPC multiply-add operation to get the
-   required accuracy with high speed.
-
-   The argument reduction works by a combination of table lookup to
-   obtain the initial guesses, and some careful modification of the
-   generated guesses (which mostly runs on the integer unit, while the
-   Newton-Rhapson is running on the FPU).  */
-double
-__sqrt(double x)
-{
-  const float inf = *(const float *)&a_inf;
-  /* x = f_wash(x); *//* This ensures only one exception for SNaN. */
-  if (x > 0)
-    {
-      if (x != inf)
-       {
-         /* Variables named starting with 's' exist in the
-            argument-reduced space, so that 2 > sx >= 0.5,
-            1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
-            Variables named ending with 'i' are integer versions of
-            floating-point values.  */
-         double sx;   /* The value of which we're trying to find the
-                         square root.  */
-         double sg,g; /* Guess of the square root of x.  */
-         double sd,d; /* Difference between the square of the guess and x.  */
-         double sy;   /* Estimate of 1/2g (overestimated by 1ulp).  */
-         double sy2;  /* 2*sy */
-         double e;    /* Difference between y*g and 1/2 (se = e * fsy).  */
-         double shx;  /* == sx * fsg */
-         double fsg;  /* sg*fsg == g.  */
-         fenv_t fe;  /* Saved floating-point environment (stores rounding
-                        mode and whether the inexact exception is
-                        enabled).  */
-         uint32_t xi0, xi1, sxi, fsgi;
-         const float *t_sqrt;
-
-         fe = fegetenv_register();
-         EXTRACT_WORDS (xi0,xi1,x);
-         relax_fenv_state();
-         sxi = xi0 & 0x3fffffff | 0x3fe00000;
-         INSERT_WORDS (sx, sxi, xi1);
-         t_sqrt = __t_sqrt + (xi0 >> 52-32-8-1  & 0x3fe);
-         sg = t_sqrt[0];
-         sy = t_sqrt[1];
-         
-         /* Here we have three Newton-Rhapson iterations each of a
-            division and a square root and the remainder of the
-            argument reduction, all interleaved.   */
-         sd  = -(sg*sg - sx);
-         fsgi = xi0 + 0x40000000 >> 1 & 0x7ff00000;
-         sy2 = sy + sy;
-         sg  = sy*sd + sg;  /* 16-bit approximation to sqrt(sx). */
-         INSERT_WORDS (fsg, fsgi, 0);
-         e   = -(sy*sg - almost_half);
-         sd  = -(sg*sg - sx);
-         if ((xi0 & 0x7ff00000) == 0)
-           goto denorm;
-         sy  = sy + e*sy2;
-         sg  = sg + sy*sd;  /* 32-bit approximation to sqrt(sx).  */
-         sy2 = sy + sy;
-         e   = -(sy*sg - almost_half);
-         sd  = -(sg*sg - sx);
-         sy  = sy + e*sy2;
-         shx = sx * fsg;
-         sg  = sg + sy*sd;  /* 64-bit approximation to sqrt(sx),
-                               but perhaps rounded incorrectly.  */
-         sy2 = sy + sy;
-         g   = sg * fsg;
-         e   = -(sy*sg - almost_half);
-         d   = -(g*sg - shx);
-         sy  = sy + e*sy2;
-         fesetenv_register (fe);
-         return g + sy*d;
-       denorm:
-         /* For denormalised numbers, we normalise, calculate the
-            square root, and return an adjusted result.  */
-         fesetenv_register (fe);
-         return __sqrt(x * two108) * twom54;
-       }
-    }
-  else if (x < 0)
-    {
-#ifdef FE_INVALID_SQRT
-      feraiseexcept (FE_INVALID_SQRT);
-      /* For some reason, some PowerPC processors don't implement
-        FE_INVALID_SQRT.  I guess no-one ever thought they'd be
-        used for square roots... :-) */
-      if (!fetestexcept (FE_INVALID))
-#endif
-       feraiseexcept (FE_INVALID);
-#ifndef _IEEE_LIBM
-      if (_LIB_VERSION != _IEEE_)
-       x = __kernel_standard(x,x,26);
-      else
-#endif
-      x = *(const float*)&a_nan;
-    }
-  return f_wash(x);
-}
-
-weak_alias (__sqrt, sqrt)
-/* Strictly, this is wrong, but the only places where _ieee754_sqrt is
-   used will not pass in a negative result.  */
-strong_alias(__sqrt,__ieee754_sqrt)
+/* __ieee754_sqrt is in w_sqrt.c  */
index 804dff3..01c76d6 100644 (file)
@@ -1,136 +1 @@
-/* Single-precision floating point square root.
-   Copyright (C) 1997 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Library General Public License as
-   published by the Free Software Foundation; either version 2 of the
-   License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Library General Public License for more details.
-
-   You should have received a copy of the GNU Library General Public
-   License along with the GNU C Library; see the file COPYING.LIB.  If not,
-   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
-
-#include <math.h>
-#include <math_private.h>
-#include <fenv_libc.h>
-#include <inttypes.h>
-
-static const float almost_half = 0.50000006;  /* 0.5 + 2^-24 */
-static const uint32_t a_nan = 0x7fc00000;
-static const uint32_t a_inf = 0x7f800000;
-static const float two48 = 281474976710656.0;
-static const float twom24 = 5.9604644775390625e-8;
-extern const float __t_sqrt[1024];
-
-/* The method is based on a description in
-   Computation of elementary functions on the IBM RISC System/6000 processor,
-   P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
-   Basically, it consists of two interleaved Newton-Rhapson approximations,
-   one to find the actual square root, and one to find its reciprocal
-   without the expense of a division operation.   The tricky bit here
-   is the use of the POWER/PowerPC multiply-add operation to get the
-   required accuracy with high speed.
-
-   The argument reduction works by a combination of table lookup to
-   obtain the initial guesses, and some careful modification of the
-   generated guesses (which mostly runs on the integer unit, while the
-   Newton-Rhapson is running on the FPU).  */
-float
-__sqrtf(float x)
-{
-  const float inf = *(const float *)&a_inf;
-  /* x = f_washf(x); *//* This ensures only one exception for SNaN. */
-  if (x > 0)
-    {
-      if (x != inf)
-       {
-         /* Variables named starting with 's' exist in the
-            argument-reduced space, so that 2 > sx >= 0.5,
-            1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
-            Variables named ending with 'i' are integer versions of
-            floating-point values.  */
-         float sx;   /* The value of which we're trying to find the square
-                        root.  */
-         float sg,g; /* Guess of the square root of x.  */
-         float sd,d; /* Difference between the square of the guess and x.  */
-         float sy;   /* Estimate of 1/2g (overestimated by 1ulp).  */
-         float sy2;  /* 2*sy */
-         float e;    /* Difference between y*g and 1/2 (note that e==se).  */
-         float shx;  /* == sx * fsg */
-         float fsg;  /* sg*fsg == g.  */
-         fenv_t fe;  /* Saved floating-point environment (stores rounding
-                        mode and whether the inexact exception is
-                        enabled).  */
-         uint32_t xi, sxi, fsgi;
-         const float *t_sqrt;
-
-         GET_FLOAT_WORD (xi, x);
-         fe = fegetenv_register ();
-         relax_fenv_state ();
-         sxi = xi & 0x3fffffff | 0x3f000000;
-         SET_FLOAT_WORD (sx, sxi);
-         t_sqrt = __t_sqrt + (xi >> 23-8-1  & 0x3fe);
-         sg = t_sqrt[0];
-         sy = t_sqrt[1];
-         
-         /* Here we have three Newton-Rhapson iterations each of a
-            division and a square root and the remainder of the
-            argument reduction, all interleaved.   */
-         sd  = -(sg*sg - sx);
-         fsgi = xi + 0x40000000 >> 1 & 0x7f800000;
-         sy2 = sy + sy;
-         sg  = sy*sd + sg;  /* 16-bit approximation to sqrt(sx). */
-         e   = -(sy*sg - almost_half);
-         SET_FLOAT_WORD (fsg, fsgi);
-         sd  = -(sg*sg - sx);
-         sy  = sy + e*sy2;
-         if ((xi & 0x7f800000) == 0)
-           goto denorm;
-         shx = sx * fsg;
-         sg  = sg + sy*sd;  /* 32-bit approximation to sqrt(sx),
-                               but perhaps rounded incorrectly.  */
-         sy2 = sy + sy;
-         g   = sg * fsg;
-         e   = -(sy*sg - almost_half);
-         d   = -(g*sg - shx);
-         sy  = sy + e*sy2;
-         fesetenv_register (fe);
-         return g + sy*d;
-       denorm:
-         /* For denormalised numbers, we normalise, calculate the
-            square root, and return an adjusted result.  */
-         fesetenv_register (fe);
-         return __sqrtf(x * two48) * twom24;
-       }
-    }
-  else if (x < 0)
-    {
-#ifdef FE_INVALID_SQRT
-      feraiseexcept (FE_INVALID_SQRT);
-      /* For some reason, some PowerPC processors don't implement
-        FE_INVALID_SQRT.  I guess no-one ever thought they'd be
-        used for square roots... :-) */
-      if (!fetestexcept (FE_INVALID))
-#endif
-       feraiseexcept (FE_INVALID);
-#ifndef _IEEE_LIBM
-      if (_LIB_VERSION != _IEEE_)
-       x = __kernel_standard(x,x,126);
-      else
-#endif
-      x = *(const float*)&a_nan;
-    }
-  return f_washf(x);
-}
-
-weak_alias (__sqrtf, sqrtf)
-/* Strictly, this is wrong, but the only places where _ieee754_sqrt is
-   used will not pass in a negative result.  */
-strong_alias(__sqrtf,__ieee754_sqrtf)
+/* __ieee754_sqrtf is in w_sqrtf.c  */