Remove unused variables.
authoraj <aj>
Fri, 23 Aug 2002 08:53:06 +0000 (08:53 +0000)
committeraj <aj>
Fri, 23 Aug 2002 08:53:06 +0000 (08:53 +0000)
sysdeps/ieee754/flt-32/e_jnf.c
sysdeps/ieee754/ldbl-96/e_j0l.c

index 9e5279c..34c4d95 100644 (file)
@@ -25,7 +25,6 @@ static const float
 #else
 static float
 #endif
-invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
 two   =  2.0000000000e+00, /* 0x40000000 */
 one   =  1.0000000000e+00; /* 0x3F800000 */
 
@@ -62,7 +61,7 @@ static float zero  =  0.0000000000e+00;
        if(n==1) return(__ieee754_j1f(x));
        sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
        x = fabsf(x);
-       if(ix==0||ix>=0x7f800000)       /* if x is 0 or inf */
+       if(ix==0||ix>=0x7f800000)       /* if x is 0 or inf */
            b = zero;
        else if((float)n<=x) {
                /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
@@ -90,11 +89,11 @@ static float zero  =  0.0000000000e+00;
                }
            } else {
                /* use backward recurrence */
-               /*                      x      x^2      x^2
+               /*                      x      x^2      x^2
                 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
                 *                      2n  - 2(n+1) - 2(n+2)
                 *
-                *                      1      1        1
+                *                      1      1        1
                 *  (for large x)   =  ----  ------   ------   .....
                 *                      2n   2(n+1)   2(n+2)
                 *                      -- - ------ - ------ -
@@ -107,7 +106,7 @@ static float zero  =  0.0000000000e+00;
                 *                     1
                 *         w - -----------------
                 *                        1
-                *              w+h - ---------
+                *              w+h - ---------
                 *                     w+2h - ...
                 *
                 * To determine how many terms needed, let
@@ -144,15 +143,15 @@ static float zero  =  0.0000000000e+00;
                v = two/x;
                tmp = tmp*__ieee754_logf(fabsf(v*tmp));
                if(tmp<(float)8.8721679688e+01) {
-                   for(i=n-1,di=(float)(i+i);i>0;i--){
+                   for(i=n-1,di=(float)(i+i);i>0;i--){
                        temp = b;
                        b *= di;
                        b  = b/x - a;
                        a = temp;
                        di -= two;
-                   }
+                   }
                } else {
-                   for(i=n-1,di=(float)(i+i);i>0;i--){
+                   for(i=n-1,di=(float)(i+i);i>0;i--){
                        temp = b;
                        b *= di;
                        b  = b/x - a;
@@ -164,9 +163,9 @@ static float zero  =  0.0000000000e+00;
                            t /= b;
                            b  = one;
                        }
-                   }
+                   }
                }
-               b = (t*__ieee754_j0f(x)/b);
+               b = (t*__ieee754_j0f(x)/b);
            }
        }
        if(sgn==1) return -b; else return b;
index 79e13be..e8966f6 100644 (file)
  *        for x in (0,2)
  *             j0(x) = 1 - z/4 + z^2*R0/S0,  where z = x*x;
  *        for x in (2,inf)
- *             j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
- *        where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ *             j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+ *        where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
  *        as follow:
  *             cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
  *                     = 1/sqrt(2) * (cos(x) + sin(x))
  *             sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
  *                     = 1/sqrt(2) * (sin(x) - cos(x))
- *        (To avoid cancellation, use
+ *        (To avoid cancellation, use
  *             sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- *         to compute the worse one.)
+ *         to compute the worse one.)
  *
  *     3 Special cases
  *             j0(nan)= nan
@@ -47,8 +47,8 @@
  *        Note: For tiny x, U/V = u0 and j0(x)~1, hence
  *             y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
  *     2. For x>=2.
- *             y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
- *        where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ *             y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+ *        where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
  *        by the method mentioned above.
  *     3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
  */
@@ -71,8 +71,6 @@ static long double
   one = 1.0L,
   invsqrtpi = 5.6418958354775628694807945156077258584405e-1L,
   tpi = 6.3661977236758134307553505349005744813784e-1L,
-  j0z1 = 2.40482555769577276862163187932650662155139L,
-  j0z2 = 5.520078110286310649596604112813027425221865L,
 
   /* J0(x) = 1 - x^2 / 4 + x^4 R0(x^2) / S0(x^2)
      0 <= x <= 2
@@ -275,7 +273,7 @@ __ieee754_y0l (x)
 /* The asymptotic expansions of pzero is
  *     1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
  * For x >= 2, We approximate pzero by
- *     pzero(x) = 1 + s^2 R(s^2) / S(s^2)
+ *     pzero(x) = 1 + s^2 R(s^2) / S(s^2)
  */
 #ifdef __STDC__
 static const long double pR8[7] = {
@@ -450,7 +448,7 @@ pzero (x)
 /* For x >= 8, the asymptotic expansions of qzero is
  *     -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
  * We approximate qzero by
- *     qzero(x) = s*(-.125 + R(s^2) / S(s^2))
+ *     qzero(x) = s*(-.125 + R(s^2) / S(s^2))
  */
 #ifdef __STDC__
 static const long double qR8[7] = {