1 \documentclass{article}
6 \title{Calculus 3 Lecture Notes}
10 \section*{Lecture 26 -- Mappings Continued}
13 \paragraph*{Example 1}
14 $(u,v) = G(x,y) = (\frac{x}{y}, x - y) \,\, (p,q) = F(u,v) = (uv, u + v)$
15 Calculate $D(F \circ G)$ at the point $(x,y) = (3,1)$.
17 \subsection*{Inverse Mappings}
18 We can find the mapping from $(u,v)$ back to $(x,y)$.
20 \paragraph*{Example 2}
21 Image of domain $D$ under $F$. We have to areas in a Cartesian graph. One from
22 $y = 0$ to $y = \frac{\pi}{2}$ and the other from $y = 2\pi$ to $y =
23 \frac{5\pi}{2}$, both from $x = 0$ to $x = 1$. Both of these functions will map
24 to the same quarter of a unit circle in polar coordinates (defined by $F$).
26 \subsubsection*{Definitions}
27 Mapping and one-to-one.
29 \subsection*{The Jacobian of an Inverse Mapping}
30 $DF^{-1} = (DF)^{-1}$ valid if one-to-one and partials are continuous.
32 \paragraph*{Example 3}
33 $(u,v) = F(x,y) = (x + y, \frac{x}{x + y}) \, y \neq -x$ Find $DF, DF^{-1}$ and
34 verify $DF \cdot DF^{-1} = I$.