# Introduction to OpenCL and GPU Programming

Katharine Hyatt

February 12, 2012

Basics

GPGPU Concept

Beginning Example

Getting Code Working

- 1 Basics
- 2 GPGPU Concepts
- 3 Beginning Example
- 4 Getting Code Working

### Basics

GPGPU Concepts

Beginning Example

Getting Co

Getting Code Working 1 Basics

2 GPGPU Concepts

Beginning Example

4 Getting Code Working

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

### Basics

GPGPU

Beginnin

Example

Working Cod

GPGPU Concepts

Beginning Example

Getting Code

# What is OpenCL?

• Extension of the C programming language

Beginning Example

Getting Code Working

- Extension of the C programming language
- Allows control of heterogenous systems

GPGPU Concepts

Beginning Example

Getting Code Working

- Extension of the C programming language
- Allows control of heterogenous systems
- Code runs on CPU, GPU, Cell.

GPGPU Concepts

Beginning Example

Getting Code Working

- Extension of the C programming language
- Allows control of heterogenous systems
- Code runs on CPU, GPU, Cell.
- Open standard developed by OpenCL group

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

### Basics

GPGPU

Beginning Example

Getting Cod Working

### Basics

GPGPU Concepts

Beginning Example

Getting Cod Working

# Why use a GPU?

• GPUs designed for massively parallel computing

### **Basics**

GPGPU Concepts

Beginning Example

Getting Code Working

- GPUs designed for massively parallel computing
- Multiple-instruction-multiple-data architecture

GPGPU Concepts

Beginning Example

Getting Code Working

- GPUs designed for massively parallel computing
- Multiple-instruction-multiple-data architecture
- Use asynchronous control between host and device

GPGPU Concepts

Example

Getting Code Working

- GPUs designed for massively parallel computing
- Multiple-instruction-multiple-data architecture
- Use asynchronous control between host and device
- Effective for some CPU-infeasible problems

GPGPU Concepts

Example

Getting Code Working

- GPUs designed for massively parallel computing
- Multiple-instruction-multiple-data architecture
- Use asynchronous control between host and device
- Effective for some CPU-infeasible problems
- Far cheaper per GFLOP than CPUs

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

### Basics

GPGPU

Beginning Example

Getting Cod

### Basics

GPGPU Concepts

Beginning Example

Getting Code Working

# OpenCL vs Alternatives

• OpenCL is a cross-platform open standard

#### Basics

GPGPU Concepts

Beginning Example

Getting Code Working

- OpenCL is a cross-platform open standard
- CUDA has closed source components

# **Basics**

GPGPU Concepts

Example

Getting Code Working

- OpenCL is a cross-platform open standard
- CUDA has closed source components
- So far, CUDA only works on nVidia

# Basics

GPGPU Concepts

Example

Getting Code Working

- OpenCL is a cross-platform open standard
- CUDA has closed source components
- So far, CUDA only works on nVidia
- MP is CPU-only

#### Basics

GPGPU Concepts

Example

Working Code

- OpenCL is a cross-platform open standard
- CUDA has closed source components
- So far, CUDA only works on nVidia
- MP is CPU-only
- OpenCL ecosystem is less developed

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

### Basics

GPGPU

Beginnin

Example

Working Cod

# What do you need?

#### Basics

GPGPU Concepts

Beginning Example

Getting Code Working

# What do you need?

Any computer with a CPU or Cell

### Basics

GPGPU Concepts

Beginning Example

Getting Code

# What do you need?

- Any computer with a CPU or Cell
- Can also have a GPU (more parallelism!)

#### Basics

GPGPU Concepts

Beginning Example

Getting Code Working

# What do you need?

- Any computer with a CPU or Cell
- Can also have a GPU (more parallelism!)
- Developer driver and OpenCL compiler

Basics

GPGPU Concepts

Beginning Example

Getting Code Working Basics

2 GPGPU Concepts

**3** Beginning Example

4 Getting Code Working

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Rasio

GPGPU

Concepts

Beginnin, Example

Working Code

Beginning Example

Getting Cod Working

# How is it different?

GPUs have more restrictions than CPU

### GPGPU Concepts

Beginning Example

Working Code

- GPUs have more restrictions than CPU
- Designed for one task, not many

Example

Getting Code Working

- GPUs have more restrictions than CPU
- Designed for one task, not many
- Performance greatly affected by two factors:

Example

Getting Code Working

- GPUs have more restrictions than CPU
- Designed for one task, not many
- Performance greatly affected by two factors:
  - Memory access pattern

Basics

### GPGPU Concepts

Example

Getting Code Working

- GPUs have more restrictions than CPU
- Designed for one task, not many
- Performance greatly affected by two factors:
  - Memory access pattern
  - Instruction configuration

Basics

## GPGPU Concepts

Example

Working Code

- GPUs have more restrictions than CPU
- Designed for one task, not many
- Performance greatly affected by two factors:
  - Memory access pattern
  - Instruction configuration
- Must keep track of memory spaces!

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Racio

GPGPU Concepts

Beginnin

Example

Working Cod

# Talking to the GPU

Beginning Example

Getting Code Working

# Talking to the GPU

All functions are "controlled" from CPU

Beginning Example

Getting Code Working

# Talking to the GPU

- All functions are "controlled" from CPU
- CPU launches a GPU fuction (kernel)

Beginning Example

Getting Code Working

# Talking to the GPU

- All functions are "controlled" from CPU
- CPU launches a GPU fuction (kernel)
- CPU regains control before function finishes

Beginning Example

Getting Code Working

## Talking to the GPU

- All functions are "controlled" from CPU
- CPU launches a GPU fuction (kernel)
- CPU regains control before function finishes
- Memory transfers can occur alongside computation

Basic

GPGPU Concepts

Beginning Example

Getting Cod Working

**GPGPU** Concepts

• Called from host

- execute on device

### Kernels

Katharine Hyatt

### Dasics

GPGPU Concepts

Example

Getting Cod

- Called from host
  - execute on device
- Function instances execute concurrently on threads

### **Kernels**

Katharine Hyatt

### \_\_\_\_

GPGPU Concepts

Example

Getting Cod

- Called from host
  - execute on device
- Function instances execute concurrently on threads
- Must tell device how many threads to use

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Pacie

GPGPU Concepts

Beginning

Example

Getting Cod Working

Basics

GPGPU Concepts

Beginning Example

Getting Code Working

### More Kernels

Device performs identical operations on data

GPGPU

## Concepts

Beginning Example

Getting Code Working

- Device performs identical operations on data
- Launch kernels using task queue

Dasics

GPGPU Concepts

Example

Getting Code Working

- Device performs identical operations on data
- Launch kernels using task queue
- Information about kernegiven to device

Basics

GPGPU Concepts

Example

Getting Code Working

- Device performs identical operations on data
- Launch kernels using task queue
- Information about kernel given to device
- How many work-groups <sup>o</sup><sub>6</sub>
   and work-items needed?<sup>7</sup>

```
const char *particles =
"
_-kernel_void_update_state(_-global_float4_*
"
_-
"
"
"
```

Dasics

GPGPU Concepts

Example

Getting Code Working

- Device performs identical operations on data
- Launch kernels using task queue
- Information about kernel given to device
- How many work-groups <sup>5</sup><sub>6</sub>
   and work-items needed?<sup>7</sup>
- Which arguments does kernel take?

Basics

GPGPU Concepts

Exampl

Getting Code Working

- Device performs identical operations on data
- Launch kernels using task queue
- Information about kernel given to device
- How many work-groups <sup>5</sup><sub>6</sub>
   and work-items needed?<sup>7</sup>
- Which arguments does kernel take?
- Function definition passed as a string

```
const char *particles =
" __kernel_void_update_state( __global_float4 _*
" __
" __
" __
```

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Pacie

GPGPU Concepts

Beginnin

Example

Working Cod

**GPGPU** Concepts

## Work-groups and Work-items

 Logical structures used to group processing

Basics

GPGPU Concepts

Beginning Example

Getting Code Working

- Logical structures used to group processing
- Workgroups processed independently on device cores

Basic

GPGPU Concepts

Beginning Example

Getting Code Working

- Logical structures used to group processing
- Workgroups processed independently on device cores
- Each workgroup contains \$INTEGER wavefronts

Rasio

GPGPU Concepts

Beginning Example

Getting Code Working

- Logical structures used to group processing
- Workgroups processed independently on device cores
- Each workgroup contains \$INTEGER wavefronts
- Scheduling of workgroups handled by GPU

Basic

### GPGPU Concepts

Beginning Example

Getting Code Working

- Logical structures used to group processing
- Workgroups processed independently on device cores
- Each workgroup contains \$INTEGER wavefronts
- Scheduling of workgroups handled by GPU
- Can create more workgroups than cores



Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Basic

GPGPU Concepts

Beginnin

Example

Working Cod

Basic

GPGPU Concepts

Beginning Example

Getting Code Working • Work-items per wavefront is device dependent

Beginning Example

Getting Code Working

- Work-items per wavefront is device dependent
- nVidia and some AMD cards 32

Basic

#### GPGPU Concepts

Beginning Example

Getting Code Working

- Work-items per wavefront is device dependent
- nVidia and some AMD cards 32
- Newer AMD cards 64

Basic

### GPGPU Concepts

Example

Working Code

- Work-items per wavefront is device dependent
- nVidia and some AMD cards 32
- Newer AMD cards 64
- Different instructions within wavefront causes serialization

Basic

### GPGPU Concepts

Example Example

Working Code

- Work-items per wavefront is device dependent
- nVidia and some AMD cards 32
- Newer AMD cards 64
- Different instructions within wavefront causes serialization
- Different instructions between wavefronts is fine

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Rasio

GPGPU Concepts

Beginning

Catting

Working Code

#### GPGPU Concepts

Beginning Example

Getting C

Working Cod

## Synchronization

• Two types of synchronization

#### GPGPU Concepts

Beginning Example

Getting Code Working

- Two types of synchronization
- Work-group

Beginning Example

Getting Code Working

- Two types of synchronization
- Work-group
  - Work-items in wavefront execute same instruction
- Command

#### **GPGPU** Concepts

- Two types of synchronization
- Work-group
  - Work-items in wavefront execute same instruction
  - No work-item proceeds until all finished
- Command

Basics

### GPGPU Concepts

Beginning Example

Getting Code Working

- Two types of synchronization
- Work-group
  - · Work-items in wavefront execute same instruction
  - No work-item proceeds until all finished
- Command
  - Orders commands in instruction queue

Basics

### GPGPU Concepts

Beginning Example

Getting Code Working

- Two types of synchronization
- Work-group
  - · Work-items in wavefront execute same instruction
  - No work-item proceeds until all finished
- Command
  - Orders commands in instruction queue
  - Change memory value ⇒ subsequent commands notice

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Dania

GPGPU Concepts

Beginning Example

Getting C

Working Cod



Dania

GPGPU Concepts

Beginning Example

Getting Code Working

## Host and Device Memory Spaces

• Generally, GPU cannot access CPU memory

Rasio

#### GPGPU Concepts

Beginning Example

Getting Code

## Host and Device Memory Spaces

- Generally, GPU cannot access CPU memory
- CPU indirectly accesses GPU through API

Racio

#### GPGPU Concepts

Beginning Example

Getting Co

Working Code

## Host and Device Memory Spaces

- Generally, GPU cannot access CPU memory
- CPU indirectly accesses GPU through API
- Can map CPU pointers to GPU

Beginning Example

Getting Code Working

## Host and Device Memory Spaces

- Generally, GPU cannot access CPU memory
- CPU indirectly accesses GPU through API
- Can map CPU pointers to GPU
- Kernels on separate devices

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Racio

GPGPU Concepts

Beginning Example

Getting Cod Working

Getting Code Working

### Within The Kernel

Kernel can discover information about itself

Getting Code Working

- Kernel can discover information about itself
- Location within a work-group

Getting Code Working

- Kernel can discover information about itself
- Location within a work-group
- Which workgroup contains the kernel instance

Example

Getting Code Working

- Kernel can discover information about itself
- Location within a work-group
- Which workgroup contains the kernel instance
- Kernel can access three types of memory

#### Rasio

#### GPGPU Concepts

Example

Working Code

- Kernel can discover information about itself
- Location within a work-group
- Which workgroup contains the kernel instance
- Kernel can access three types of memory
- Will use this later during example

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Racio

GPGPU Concepts

Beginnin

Example

Working Cod

Rasio

GPGPU Concepts

Beginning Example

Getting Code Working

### Kernel Memory

Global memory - RAM on GPU

#### GPGPU Concepts

Beginning Example

Getting Code Working

- Global memory RAM on GPU
  - Far from computing chip slow access

Getting Code Working

- Global memory RAM on GPU
  - Far from computing chip slow access
  - More space than any other type

Getting Code Working

- Global memory RAM on GPU
  - Far from computing chip slow access
  - More space than any other type
- Local memory shared within wavefront

Rasio

#### GPGPU Concepts

Example

Working Code

- Global memory RAM on GPU
  - Far from computing chip slow access
  - More space than any other type
- Local memory shared within wavefront
  - Physically close to chip fast access

Example

Getting Code Working

- Global memory RAM on GPU
  - Far from computing chip slow access
  - More space than any other type
- Local memory shared within wavefront
  - Physically close to chip fast access
  - Small amount of space available

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Racio

GPGPU Concepts

Beginnin

Example

Working

Getting Code Working

## Kernel Memory

• Private Memory - unique to work-item

#### GPGPU Concepts

Beginning Example

Getting Code Working

- Private Memory unique to work-item
  - Most non-local variables declared within kernel

Rasio

#### GPGPU Concepts

Beginning Example

Getting Code

- Private Memory unique to work-item
  - Most non-local variables declared within kernel
  - Stored in global memory slow

Basic

#### GPGPU Concepts

Example

Getting Code Working

- Private Memory unique to work-item
  - Most non-local variables declared within kernel
  - Stored in global memory slow
- Registers unique to work-item

Rasio

#### GPGPU Concepts

Example

Working Code

- Private Memory unique to work-item
  - Most non-local variables declared within kernel
  - Stored in global memory slow
- Registers unique to work-item
  - Similar to CPU registers

Example

Working Code

- Private Memory unique to work-item
  - Most non-local variables declared within kernel
  - Stored in global memory slow
- Registers unique to work-item
  - Similar to CPU registers
  - Physically close to chip fast access

D - - ! -

GPGPU Concepts

Beginning Example

Cotting (

Working Code

## What does CPU control mean?

Racio

#### GPGPU Concepts

Beginning Example

Getting C

Working Code

### What does CPU control mean?

GPU memory managed from CPU code

Getting Cod

### What does CPU control mean?

- GPU memory managed from CPU code
- All kernels launched from CPU

Getting Cod

### What does CPU control mean?

- GPU memory managed from CPU code
- All kernels launched from CPU

Rasics

GPGPU Concept

Beginning Example

Getting Cod

1 Basics

2 GPGPU Concepts

**3** Beginning Example

4 Getting Code Working

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Racio

Concept

Poginnin

Beginning Example

Getting Code Working

Getting Code Working

### Physical Problem

ullet n point charges affected by potential

#### Racio

GPGPU Concept

Beginning Example

Getting Code

- *n* point charges affected by potential
- Source located at (0,0)

Getting Code Working

- *n* point charges affected by potential
- Source located at (0,0)
- Potential has  $\frac{\hat{r}}{r}$  form

Getting Code Working

- n point charges affected by potential
- Source located at (0,0)
- Potential has  $\frac{\hat{r}}{r}$  form
- For now, particles don't interact

Getting Code Working

- n point charges affected by potential
- Source located at (0,0)
- Potential has  $\frac{\hat{r}}{r}$  form
- For now, particles don't interact
- Write OpenCL to model system

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Rasio

Concept

Concept

Beginning Example

Getting Code Working

Rasio

Concept

Beginning Example

Getting Cod Working

### **Getting Started**

• Need to include relevant libraries

Getting Code Working

- Need to include relevant libraries
- Initialize OpenCL API

Getting Code Working

- Need to include relevant libraries
- Initialize OpenCL API
- Must detect and select usable devices

Getting Code Working

- Need to include relevant libraries
- Initialize OpenCL API
- Must detect and select usable devices
- Set up command queue and context

#### Rasio

GPGPU Concepts

#### Beginning Example

Getting Code Working

### **Getting Started**

- Need to include relevant libraries
- Initialize OpenCL API
- Must detect and select usable devices
- Set up command queue and context
- Specify runtime compilation of kernels

Basic

Concept

Concept

### Beginning Example

Getting Code

```
#include <CL/cl.h> // include the OpenCL library
#include <stdio.h>
```

Introduction to OpenCL and GPU Programming

#### Katharine Hyatt

Pacie

Concept

Beginning Example

Getting Code

Working Code

# Starting OpenCL and finding a GPU

```
cl_platform_id platform; //finding an appropriate platform clGetPlatformIds(1, &platform, NULL); // only look for one cl_device_id device; //finding an appropriate GPU clGetDeviceIds(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL); // only
```

#### Beginning Example

```
Command queue and the context
```

```
cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL, N
cl_command_queue queue = clCreateCommandQueue(context, device, 0, NULL);
```

#### Pacie

CDCDII

Concept

#### Beginning Example

Catting C

orking Code

3

### Building a kernel

```
 \begin{array}{lll} \text{cl\_program program} &= \text{clCreateProgramWithSource(context, 1, \&particles, Note of the program of t
```

```
cl_kernel kernel = clCreateKernel(program, "particles", NULL);
```

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Rasio

GPGPH

Concept

Beginning Example

Getting Code Working

Pacie

GPGPU Concept

Beginning Example

Getting Code Working

### Setting Up CPU Storage

Create initial state first on CPU

#### Rasio

GPGPU Concepts

#### Beginning Example

Getting Code Working

- Create initial state first on CPU
- Must copy state to GPU

#### Rasio

GPGPU Concepts

#### Beginning Example

Getting Code Working

- Create initial state first on CPU
- Must copy state to GPU
- Use same data structure for arrays

#### Rasio

GPGPU Concepts

#### Beginning Example

Getting Code Working

- Create initial state first on CPU
- Must copy state to GPU
- Use same data structure for arrays
- Choose one efficient for device architecture

#### Rasics

GPGPU

Concept

Beginning Example

Getting Code Working

15

### Allocating and filling host arrays

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Basic

Concept

Beginning

Example

Getting Code Working

GPGPU Concept

Beginning Example

Getting Cod

### Creating GPU Storage

• Create typed buffers to store data

GPGPU Concept

Beginning Example

Getting Code Working

- Create typed buffers to store data
- Copy data from host to device

Racio

Concept

Beginning Example

Getting Code

- Create typed buffers to store data
- Copy data from host to device
- Can do both with clCreateBuffer call

#### Basic

GPGPU Concepts

#### Beginning Example

Getting Code

- Create typed buffers to store data
- Copy data from host to device
- Can do both with clCreateBuffer call
- Want to pick appropriate data structure

Basic

GPGPU Concept

Beginning Example

Getting Code Working

- Create typed buffers to store data
- Copy data from host to device
- Can do both with clCreateBuffer call
- Want to pick appropriate data structure
- Vectors better than scalars on AMD

Rasio

GPGPU Concept

Beginning Example

Getting Code Working

- Create typed buffers to store data
- Copy data from host to device
- Can do both with clCreateBuffer call
- Want to pick appropriate data structure
- Vectors better than scalars on AMD
- Store position and velocites in float4

### **GPU Arrays**

```
1 cl_mem pos = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOS
2 num_particles * sizeof(cl_float4), h_pos, NULL
3 cl_mem vel = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOS
4 num_particles * sizeof(cl_float4), h_vel, NULL
```

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Racio

GPGPU

Concept

Beginning Example

Getting Code Working

### Calling the Kernel

Beginning Example

Getting Cod

### Calling the Kernel

Set kernel arguments

### Calling the Kernel

- Set kernel arguments
- Push kernel launch into task queue

Beginning Example

Getting Cod

### Calling the Kernel

- Set kernel arguments
- Push kernel launch into task queue
- Launch kernel once for each iteration

#### Dania

GPGPU

Beginning

### Example

Getting Code
Working

### Setting Arguments and Launching

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Racio

GPGPU

Concept

Beginning Example

Getting Code Working

GPGPU Concept

Beginning Example

Getting Coo

### Writing the Kernel

Designate function as kernel using \_\_kernel

Racio

Concept

Beginning Example

Getting Code

- Designate function as kernel using \_\_kernel
- Must designate where arguments reside

Rasio

Concept

Beginning Example

Getting Code

- Designate function as kernel using \_\_kernel
- Must designate where arguments reside
- Particles don't interact ⇒ use one array

Rasio

GPGPU Concept

Beginning Example

Getting Code Working

- Designate function as kernel using \_\_kernel
- Must designate where arguments reside
- Particles don't interact ⇒ use one array
- One-to-one map between threads and elements

Beginning Example

Getting Code Working

- Designate function as kernel using \_\_kernel
- Must designate where arguments reside
- Particles don't interact ⇒ use one array
- One-to-one map between threads and elements
- Need to find thread number

#### Beginning Example

### Beginning Kernel

| "kernel_void_update_state(global_float4_*pos, |
|-----------------------------------------------|
| "global_float4_*vel,                          |
| "float_strength ,                             |
| "float_delta_t,                               |
| "int _ num_particles )                        |
| "{                                            |
| "/_Figure_out_which_particle_we_are_handling  |
| "                                             |
| "uint_current_=_get_global_id (0);            |

Introduction to OpenCL and GPU Programming

> Katharine Hyatt

Racio

Concept

Concepts

Beginning Example

Getting Code Working

### Updating the State

Basic

GPGPU Concepts

Beginning Example

Getting Code Working

### Updating the State

Need to pick integration scheme

Getting Code Working

### Updating the State

- Need to pick integration scheme
- Euler is easy, but unstable

$$x(t+\Delta t)=x(t)+\Delta t\cdot v_x(t)$$

$$v_{x}(t+\Delta t)=v(t)+\Delta t\cdot a_{x}(t)$$

Getting Code Working

### Updating the State

- Need to pick integration scheme
- Euler is easy, but unstable

$$x(t + \Delta t) = x(t) + \Delta t \cdot v_x(t)$$

$$v_{x}(t+\Delta t)=v(t)+\Delta t\cdot a_{x}(t)$$

Find particle's position in polar coordinates

Getting Code Working

### Updating the State

- Need to pick integration scheme
- Euler is easy, but unstable

$$x(t + \Delta t) = x(t) + \Delta t \cdot v_x(t)$$
  
$$v_x(t + \Delta t) = v(t) + \Delta t \cdot a_x(t)$$

- Find particle's position in polar coordinates
- Update position, then velocity

Getting Code Working

### Updating the State

- Need to pick integration scheme
- Euler is easy, but unstable

$$x(t+\Delta t)=x(t)+\Delta t\cdot v_x(t)$$

$$v_x(t+\Delta t)=v(t)+\Delta t\cdot a_x(t)$$

- Find particle's position in polar coordinates
- Update position, then velocity
- Avoid array overruns

#### Katharine Hyatt

Basic

GPGPU

Beginning

Example

Working Code

### Kernel Body

```
if ( current < num_particles)
  ______
  _____/_Calculate_new_acceleration_____
  float4_accel;
  ____accel.w____pos[current].w_*_strength_/____
  _____(_pos[current].x_*_pos[current].x_+_pos
  float_theta == atan2(_pos[current].y_/_pos[current].x_);
  ____accel.x___accel.x___accel.w_*_cos(_theta_)_*_delta_t:____
  ____accel.v___accel.v___accel.w_*_sin(_theta_)_*_delta_t:_____
  11
  ____//_Find_new_positions_and_velocities______/
12
  ____pos[current].x==_delta_t_*_vel[current].x:____
13
  pos[current].y==delta_t=*vel[current].y;
14
  vel current .x.+=_delta_t_*_accel.x;
15
  ____vel[current].v==_delta_t_*_accel.v:
16
  17
  _____
```

> Katharine Hyatt

Basic

Concept

Beginning

Example

Getting Code Working table of contents [current section]

> Katharine Hyatt

Racio

Concept

Concept

Example

Getting Code Working

Racio

Concept

Beginning

Getting Code Working

### Moving and Compiling

 scp code to high-fructose-corn-syrup.csclub.uwaterloo.ca:

Basic

Concept

Beginning Example

Getting Code Working

- scp code to high-fructose-corn-syrup.csclub.uwaterloo.ca:
- ssh in to this machine

#### Racio

GPGPU Concepts

Beginning Example

Getting Code Working

- scp code to high-fructose-corn-syrup.csclub.uwaterloo.ca:
- ssh in to this machine
- Developer drivers and compiler already installed

Basic

Concept

Beginning Example

Getting Code Working

- scp code to high-fructose-corn-syrup.csclub.uwaterloo.ca:
- ssh in to this machine
- Developer drivers and compiler already installed
- Two steps necessary:

Rasio

Concept

Beginning Example

Getting Code Working

- scp code to high-fructose-corn-syrup.csclub.uwaterloo.ca:
- ssh in to this machine
- Developer drivers and compiler already installed
- Two steps necessary:
  - Compile code with g++

Basic

Concept

Beginning Example

Getting Code Working

- scp code to high-fructose-corn-syrup.csclub.uwaterloo.ca:
- ssh in to this machine
- Developer drivers and compiler already installed
- Two steps necessary:
  - Compile code with g++
  - Link against OpenCL library

Rasio

Concept

Beginning Example

Getting Code Working

### Compilation Steps

```
g++ -o mycode.o -DATI_OS_LINUX -c mycode.cl
-I$ATISTREAMSDKROOT/include
g++ -o mycode mycode.o -lOpenCL
-L$ATISTREAMSDKROOT/lib/x86_64
```

Basic

Concept

Concept

Example

Basic

Concept

Beginning

Example

Getting Code Working  $\bullet$  Kernels compile JIT  $\Rightarrow$  pass options then

Basic

Concept

Beginning

Getting Co

- Kernels compile JIT  $\Rightarrow$  pass options then
- Can use gdb to test program

Basics

Concept

Beginning Example

- Kernels compile JIT  $\Rightarrow$  pass options then
- Can use gdb to test program
- Can also set breakpoints in kernel

Basics

Concept

Beginning Example

- Kernels compile JIT ⇒ pass options then
- Can use gdb to test program
- Can also set breakpoints in kernel
- Let's see if program works

Basics

Concept

Beginning Example

Getting Code Working Before launching gdb, use:

AMD\_OCL\_BUILD\_OPTIONS="-g -00"

Then use:
gdb mycode.out

Use r to run the code

Pacies

GPGPU Concept

Beginning Example

Getting Code Working 1 Basics

2 GPGPU Concepts

- Beginning Example
- 4 Getting Code Working

> Katharine Hyatt

Rasio

GPGPU

Concept

Beginnin Example

Getting C

Beginning Example

Getting Cod Working

### **Improvements**

• Incorporate OpenGL - graph particle positions

#### Rasio

GPGPU Concept

Beginning Example

Getting Code Working

- Incorporate OpenGL graph particle positions
- More accurate simulation make particles interact

Beginning Example

Getting Code Working

- Incorporate OpenGL graph particle positions
- More accurate simulation make particles interact
- Use local memory to speed up kernel

Beginning Example

Getting Code Working

- Incorporate OpenGL graph particle positions
- More accurate simulation make particles interact
- Use local memory to speed up kernel
- Do time iteration within kernel

Example

Getting Code Working

- Incorporate OpenGL graph particle positions
- More accurate simulation make particles interact
- Use local memory to speed up kernel
- Do time iteration within kernel
- Use AMD Profiler to analyze code

> Katharine Hyatt

Basic

GPGPU

. . .

Example

Getting Code Working

Beginning Example

Getting Code Working

### **Good Practices**

Keep work-items within wavefront instruction coherent

- Keep work-items within wavefront instruction coherent
- Use local and register memory

#### Rasio

GPGPU Concepts

Beginning Example

Getting Code

- Keep work-items within wavefront instruction coherent
- Use local and register memory
- Use appropriate data structure for architecture

#### Basic

GPGPU Concepts

Beginning Example

Getting Code Working

- Keep work-items within wavefront instruction coherent
- Use local and register memory
- Use appropriate data structure for architecture
- Minimize control flow instructions within kernel

> Katharine Hyatt

Rasio

GPGPU

Concept

Example

Working Code

Racio

Concept

Beginning

Example

Working Code

### Learning More

 Kronos group's OpenCL spec: http://www.khronos.org/opencl/ Beginning Example

Getting Code Working

- Kronos group's OpenCL spec: http://www.khronos.org/opencl/
- AMD's OpenCL tutorials and documentation: http://developer.amd.com/

Beginning Example

Getting Code Working

- Kronos group's OpenCL spec: http://www.khronos.org/opencl/
- AMD's OpenCL tutorials and documentation: http://developer.amd.com/
- nVidia's OpenCL sample code: http://developer.nvidia.com/opencl

#### Rasio

GPGPU Concepts

Beginning Example

Getting Code Working

- Kronos group's OpenCL spec: http://www.khronos.org/opencl/
- AMD's OpenCL tutorials and documentation: http://developer.amd.com/
- nVidia's OpenCL sample code: http://developer.nvidia.com/opencl
- Heterogenous Computing with OpenCL CSC has copies

# Questions?

> Katharine Hyatt

Rasio

GPGPU

Concept

Example

Getting Code Working

**GPGPU**Concept

Beginning Example

Getting Co

# OpenCL contest

Two categories:

Basic

GPGPU Concept

Beginning Example

Getting Code Working

- Two categories:
  - Open submission make something awesome!

GPGPU Concept

Beginning

Getting Cod

- Two categories:
  - Open submission make something awesome!
  - Problem ...

Beginning Example

Getting Cod

- Two categories:
  - Open submission make something awesome!
  - Problem ...
- Contest code party March 02 2012

GPGPU Concept

Example

Getting Code Working

- Two categories:
  - Open submission make something awesome!
  - Problem ...
- Contest code party March 02 2012
- Win a laptop or graphics card!